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ABSTRACT 

 

Ionic electroactive polymer (IEAP) transducers are a class of smart structures based on 

polymers that can be designed as soft actuators or sensors. IEAP actuators exhibit a high 

mechanical response to an external electrical stimulus. Conversely, they produce electrical signals 

when subjected to mechanical force. IEAP transducers are mainly composed of four different 

components: The ionomeric membrane (usually Nafion) is an ion permeable polymer that acts as 

the backbone of the transducer. Two conductive network composite (CNC) layer on both sides of 

the ionomeric membrane that enhance the surface conductivity and serve as an extra reservoir to 

the electrolytes. The electrolytes, (usually ionic liquids (IL)), which provides the mobile ions. And 

two outer electrodes on both sides of the transducer to either provide a distributed applied potential 

across the actuators (usually gold leaves) or to collect the generated signals from the sensors 

(usually copper electrodes). Any variation in any of these components or the operating conditions 

will directly affect the performance of the IEAP transduces. In this dissertation, we studied some 

of the parameters dominating the performance of the IEAP transducers by varying some of the 

transducers components or the transducers operating conditions in order to enhance their 

performance.  

The first study was conducted to understand the influence of ionic liquid concentration on 

the electromechanical performance of IEAP actuators. The IL weight percentage (wt%) was varied 

from 10% to 30% and both the electromechanical (induced strain) and the electrochemical (the 

current flow across the actuators) were studied. The results from this study showed an enhanced 

electrochemical performance (current flow is higher for higher IL wt%) and a maximum 

electromechanical strain of approximately 1.4% at 22 wt% IL content. A lower induced strain was 

noticed for IL wt% lower or higher than 22%.  
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The second study was to investigate the effect of changing the morphology of the CNC on 

the sensing performance of IEAP stress sensors. In this study, small salt molecules were added to 

the CNC layers. Salt molecules directly affected the morphology of the CNC layers resulting in a 

thicker, more porous, and high conductive CNCs. As a result, the ionic conductivity increased 

through the CNC layers and sensing performance was enhanced significantly. 

 In the third study, a non-linear angular deformation (limb-like motion) was achieved by 

varying the CNC layers of the IEAP actuators by adding some conjugated polymers (CP) patterns 

during the fabrication of the actuators. It was found that the segments with the CP layers will only 

expand and never contract during the actuation process. Depending on the direction of motion and 

the location of the CP layers, different actuation shapes such as square or triangular shapes were 

achieved rather than the typical circular bending. 

In the fourth study, the influence of temperature on the electromechanical properties of the 

IEAP actuators was examined. In this study, both electromechanical and electrochemical studies 

were conducted for actuators that were operated at temperatures ranging from 25 °C to 90 °C. The 

electromechanical results showed a lower cationic curvature with increasing temperature up to 70 

°C. On the other hand, a maximum anionic curvature was achieved at 50 °C with a sudden decrease 

after 50 °C. Actuators started to lose functionality and showed unpredictable performance at 

temperatures higher than 70 °C. Electrochemically, an enhancement of the ionic conductivity was 

resulted from increasing temperature up to 80 °C. A sudden increase in current flow was recorded 

at 90 °C indicating a shorted circuit and actuator failure. 

Finally, in the fifth study, protons in Nafion membranes were exchanged with other 

counterions of different Van der Waals volumes. The ionic conductivity was measured for IEAP 

membranes with different counterions at different temperatures. The results showed higher ionic 
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conductivities across membranes with larger Van der Waals volume counterions and higher 

temperatures. A different ionic conductivity behavior was also noticed for temperatures ranging 

from 30 ºC to 55 ºC than temperatures between 55 ºC and 70 ºC after fitting the data with the 

Arrhenius conductivity equation.
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 INTRODUCTION AND BACKGROUND 

 

 Smart materials overview  

In material science, preferred material properties include high quality, cost-effectiveness, 

durability, stability, and suitability for different applications. A new class of materials called 

“smart materials” was discovered and developed during the last century. Future research needs 

and methods for producing smart materials were discussed at a special workshop organized by the 

US Army Research Office in 1988 [1]. At that workshop, Ahmad defined a smart system or a smart 

material as “system or material which has built-in or intrinsic sensor(s), actuator(s) and control 

mechanism(s) whereby it is capable of sensing a stimulus, responding to it in a predetermined 

manner and extent, in a short/ appropriate time, and reverting to its original state as soon as the 

stimulus is removed” [2]. The stimuli could range from applied pressure or electrical potential to 

natural or environmental changes like temperature or humidity. Sensing or responding to such a 

stimulus might change the shape of the material, the mechanical or electrical response, or other 

material properties like viscosity. To be considered a smart material, the response should be 

significant, fast, reversible, and repeatable. Shape memory alloys are a well-known example of 

smart materials. In 1941 shape memory alloys (SMAs) were first described and, because they can 

return to their original shape when heated, they have been widely used in a variety of applications 

[3]. Another jump in SMA interest occurred when Buehler, et al., [4] introduced applications of 

nickel-titanium (NiTi) alloys in 1962 [5]. A famous example of an SMA structure is 

eyeglass frames that can return to their original shape after they have been deformed when heated 

to a certain temperature. 
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Depending on their response to stimulus, smart materials can be classified as either passive 

or active materials. Active materials respond physically (i.e., in geometry, in viscosity, etc.) to 

stimuli. On the other hand, passive materials only sense the stimulus and do not change their 

physical properties. Shape memory alloys, piezoelectric materials, and electroactive polymers are 

some examples of active smart materials. Optical fibers are one good example of a passive material  

[6]. Some common smart materials and their stimuli and response characteristics are shown in 

Table 1-1. 

Table 1-1 : Common smart materials and their responses to stimuli 

MATERIAL STIMULUS RESPONSE 

Piezoelectric material 

Mechanical deformation Electric signal 

Electric field Mechanical deformation 

Shape memory 

alloy 

Heat 

Returns to original shape 

(Mechanical deformation) 

Electroactive polymers  Electric field  Mechanical deformation 

Electro-rheological 

fluid 

Electric field Change in viscosity 

Optical fibers 

Temperature, pressure, or 

mechanical strain 

Change in opto-electronic 

signals 

 

 Three well-known smart materials that respond to stimulation by mechanical 

deformation are: piezoelectric materials that deform electro-mechanically, shape memory alloys 

that deform thermo-mechanically, and electroactive polymers that also deform electro-

mechanically. A brief description of such materials and their applications is shown below.  
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1.1.1. Piezoelectric materials 

Piezoelectric materials behave electromechanically: they physically deform when 

subjected to an electrical field (actuator behavior) and induce electrical signals when subjected to 

mechanical stress (sensor behavior) [7]. The relationship between these induced electric signals 

and applied stress is linear and reversible, making it easier to control the deformation and measure 

the applied stresses [8]. Aluminum nitride (AlN) is an example of an inorganic piezoelectric 

crystalline material that lacks inversion symmetry structure. After deposition, AlN films have a 

specific arrangement of ions with specific polarization in their crystalline structure. When a 

mechanical stress is applied, the internal polarization of the material crystals will change, 

developing an electrical field across the film’s boundary. Conversely, crystals will deform slightly 

to seek alignment with application of a strong electric field. A large number of crystals will result 

in noticeable deformation [8].  Piezoelectric materials are used in many applications, e.g., tactile 

sensors (devices that measure a physical phenomenon through contact and touch) that produce a 

measurable signal when pressure or force is applied [8] . Another application is energy harvesting, 

where the basic concept is to collect induced electrical charge resulting from force application. An 

example illustrating energy harvesting would be putting piezoelectric material in a person’s shoes 

and collecting the electrical charge produced through walking [8, 9]. Other examples include wrist 

watches, headphones, piezoelectric igniters, and many others [7]. 

1.1.2. Shape Memory Alloys  

 SMAs are alloys that can recover an original shape when heated (one-way SMAs) 

or   when cooled (two-way SMAs); two-way SMAs are less common because of the training 

requirement and lower recovery strain compared to one-way SMAs [3, 7, 10]. SMAs have two 

phases: austenite and martensite. The austenite phase is the high temperature phase where most 
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alloys have a super-lattice structure and their sub-lattices have body-centered cubic (BCC) 

structure (e.g. titanium-nickel [Ti-Ni] alloy) or face-centered cube (FCC) structure (e.g. copper-

manganese [Mn-Cu] alloy). The martensite phase is the low temperature phase and is formed by 

diffusionless transformation of atoms while cooling. Atoms of the austenite structure move 

cooperatively or by a shear-like mechanism to form a twinned martensite structure during the 

cooling cycle without breaking atomic bonds [11, 12]. Austenite and martensite structures are 

shown in Figure 1-1.  

 

Figure 1-1 : Austenite and martensite phases 

 

 To establish an austenite shape (also known as parent shape), the alloy must be constrained 

to the desired shape and heated to a specific temperature. At this phase, the atoms will be arranged 

into the most compact pattern possible, a cubic structure (FCC or BCC). After cooling without 

experiencing external forces, they will retain their parent shape and transform into the martensite 

phase. While in this phase, they can be deformed and retain the deformation. When reheated, they 
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will revert to the austenite phase with the original compact cubic structure and the original shape 

[3, 13]. SMAs have many automotive [14] , aerospace [15] , robotics [16], and biomedical [17] 

applications . A simple application is their use as actuators to open or close a valve when the 

temperature is high, and to reverse this action in a spring-like manner when the temperature is low. 

1.1.3. Electroactive polymer 

Electroactive polymer (EAP) actuators, like piezoelectric materials, deform when an 

electrical field is applied across them. EAP actuators generally have some special characteristics 

usually not found in non-polymeric actuators, including flexibility, light weight, relatively 

inexpensive fabrication, and fracture tolerance. They also can be configured in virtually any 

convenient shape at any desired size while retaining their special properties [7, 18-20] . The first 

EAP actuators were capable of inducing only relatively small actuation, but since the 1990s many 

new polymers have demonstrated a relatively larger mechanical response to electric fields than 

electroactive ceramics. They are also faster and exhibit low density and high resilience compared 

to shape memory alloys [19, 21-23]. Due to their high actuation strain, high toughness, and fast 

response, similarity in movement of such actuators to biological muscle movement was noticed. 

This attractive similarity has captured the attention of engineers and scientists who may use them 

in artificial muscles to mimic the movements of animals and insects in robotic applications [19]. 

The first reported commercial product using EAP actuators was a swimming fish produced by 

Eamex in Japan in 2002 [18], as illustrated in Figure 1-2. These fish swam without use of batteries 

or motors. Their movement was produced by the simple bending of EAP actuators under the 

stimulation of an electrical field induced by coils at the top and bottom of the tank. The next section 

will present more details regarding EAP actuators. 
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Figure 1-2 : First commercial EAP actuators in swimming fish. Produced in Japan in 2002 by Eamex. 

 Electroactive Polymeric (EAP) Actuators  

Based on their response mechanism, electroactive actuators can be divided it to two major 

groups: electronic EAP (EEAP) actuators and ionic EAP (IEAP) actuators. Both EEAP actuators 

and IEAP actuators are driven by electric fields. EEAP actuators respond  directly to the electric 

field due to their crystalline or dielectric internal structure, while IEAP actuators are driven by 

diffusion of mobile ions inside the polymer due to attractive and repulsive forces of the electric 

field [19, 20, 24]. Dielectric elastomer EAPs, ferroelectric polymers, and liquid crystal elastomers 

(LCE) are types of EEAP actuators.  Carbon nanotubes (CNT), conducting polymers (CP), ionic 

polymer gels (IPG), and ionic polymer-metal composites (IPMC) are types of IEAP actuators [7, 

20, 24].  

EEAP actuators have certain advantages over IEAP actuators. In general, they induce 

larger forces, actuate faster, and operate for longer times than IEAPs. They also operate without 

precious-metal gold or platinum electrodes.   On the negative side, they require much higher 

operating voltage (kV-MV), and they have monopolar actuation independent of voltage polarity 
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because of associated electrostriction effects. The advantages of IEAP actuators over EEAP 

actuators are low operating voltage (1-4 volts), making IEAPs preferred in robotic battery-driven 

applications, and bi-directional actuation related to the polarity of the applied voltage [20]. 

1.2.1. Electronic EAP (EEAP) Actuators 

1.2.1.1. Dielectric elastomer EAP 

Dielectric elastomer EAP actuators are made from a rubber-like polymer (elastomer) 

sandwiched between two plate electrodes. When high electric field is applied (kV/m or MV/m) 

across the electrodes, the electrostatic force between the two plates will squeeze the polymer and 

cause actuation. This force is referred to Coulombic attraction between opposite charges on the 

electrodes. Electrostriction arising from strain-induced changes in dielectric properties of the 

materials that have some crystallinity in their structure also contributes to the actuation. Strain will 

change the lattice structure of the crystalline structure that in turn changes its dielectric properties. 

This effect is different for different elastomers and can be represented by an appropriate dielectric 

constant. Some dielectrics, depending on the applied voltage and particular material polarities, will 

result in more strain (dielectric become thinner) or oppose the induced strain from the Coulombic 

attraction due to electrostriction [25, 26]. Figure 1-3 shows the operating principles of this type of 

actuation that occurs primarily through changing the area of the actuator. Polymer thickness will 

decrease with a change in applied voltage (change in electrostatic force) and the area will expand 

accordingly to maintain constant volume [18, 27]. In general, the actuation depends on the polymer 

modulus, the dielectric constant, and the applied potential. Elastomers with a high dielectric 

constant and a low elastic modulus will generally exhibit greater strain [7]. Some advantages of 

these actuators are high strain (Pelrine et al. reported a strain of 215% for 3M VHB 4910 acrylic 
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elastomer [28]), the ability to be cast into different shapes, and ease of manufacturing. Their main 

disadvantage is the high operating voltage requirement [7, 29]. 

 

Figure 1-3: Principle of actuation of dielectric polymer actuators (a) Due to Coulombic attraction 

between opposite charges on electrodes [18] (b) Dielectric with no applied voltage (c) After applying 

voltage , some dielectrics add more strain (d) and some become thicker and reduce the induced strain 

[26] 

1.2.1.2. Ferroelectric Polymers 

Ferroelectric polymers are similar to piezoelectric materials. They have a crystalline 

structure with specific polarity and deformation occurs when dipoles rotate to follow the polarity 

of the applied electric field [7, 18, 27, 29]. Applications of ferroelectric polymers are similar to 

applications of piezoelectric materials. One advantage of ferroelectric materials is that they retain 

their polarization after removing the applied electric field [30, 31]. This property has led to use of 

ferroelectric materials to store data by assigning “0” and “1” values to each polarization direction 

after being actuated by electric field. Using arrays of microscale units of such materials, 
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information storage units can be fabricated. Poly vinylidene fluoride (PVDF) and its copolymers 

are the most common ferroelectric polymers. 

1.2.1.3. Liquid Crystal Elastomers 

Liquid crystal elastomer structures have rigid and flexible elements. The rigid parts (rod-

like molecular structure, also called mesogens) tend to align their molecules in one direction more 

than another (anisotropic structure). At the same time, the flexible part represents the fluidity 

associated with liquid crystals (rubber-like elasticity) [27]. The mesogens have a specific polarity 

and the actuation mechanism of liquid crystal elastomers is the same as in ferroelectric polymers. 

When an electric field is applied, the dipoles tend to orient themselves along the direction of the 

field, resulting in mechanical deformation [7, 18, 27, 32]; the actuation mechanism is shown in 

Figure 1-4. One application of liquid crystal elastomers is their use in artificial muscles [33]  

 

Figure 1-4 : Actuation mechanism of liquid crystal elastomers [27] 

1.2.2. Ionic EAP (IEAP) Actuators  

1.2.2.1. Carbon Nanotubes (CNTs) Actuators  

Carbon nanotubes are very small tubular cylinders of carbon atoms. Previous studies have 

demonstrated that CNTs have attractive properties such as: high stiffness, high strength, low 
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density, and useful electrical and thermal properties [29, 34, 35]. Because of their electrical 

conductivity CNTs can be used as electrodes of ionic polymer actuators. The first reported single-

wall CNT actuator was reported in 1999 by Baughman, et al. In that study two strips of carbon 

nanotubes papers were stacked using a double-sided scotch tape and soaked in an ionic liquid. The 

actuation occurred after applying voltage across the two strips[36, 37]. 

 One of the actuation mechanisms for CNTs is caused by the quantum chemical effect in 

which the C-C bonds in CNTs expand due to injection of electrons and contract when electrons 

are lost. The cathode side will thus expand and be bent toward the anode. However, when a high 

voltage is applied, a high charge-density electrostatic force will result in equal expansion of both 

sides of the actuator and no bending will occur. [29, 36, 38]. Another mechanism of actuation is 

that deformation will occur due to the accumulation of ions on both sides of the actuator driven by 

the electric field. Because of anion and cation volume imbalance, swelling on one side will cause 

bending [34, 36]  

 

1.2.2.2. Conducting Polymers Actuators  

Conducting polymers are polymers with a conjugated structure. The backbone structure 

consists of atoms connected by alternating single and double bonds; Figure 1-5 shows an example 

of some conducting polymers with alternating structure. The conductivity of these polymers is due 

to the existence of the π-conjugated bond in the structure. [27, 39].  
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Figure 1-5 : Conjugated structure in conducting polymers[27] 

With existence of ionic liquid, and exposed to an applied electric potential, oxidation and 

reduction will cause a deformation of the conducting polymer. Oxidation at the anode (loss of 

electrons) will cause insertion of anions to compensate for the charge loss, resulting in swelling 

and expansion of the conducting polymer. This deformation can be called electro-chemo-

mechanical deformation. After oxidization, reduction (adding electrons) will cause removal of the 

anions and result in shrinking. This is a valid explanation if the anions are small (like ClO4-) and 

mobile within the conducting polymer; the process is called anion-driven actuation. If anions are 

trapped within the polymer (big [dodecylbenzenesulfonic, DBS-] acid) or are not mobile within 

the polymer after oxidation, reduction will cause insertion of cations into the network instead of 

removing anions. In that case the polymer will expand more during the reduction state. When 

oxidized once again, cations will leave the network, resulting in shrinking. This process is called 

cation-derived actuation [27, 40]. The entire process is illustrated in Figure 1-6.   
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Figure 1-6 : Actuation mechanism in conducting polymers [27]. 

1.2.2.3. Ionic Electroactive Polymer Gels 

Polymer gels can produce strong actuators that can match the force and energy of biological 

muscles [18]. Generally, polymer gels are composed of macromolecules cross-linked in a three-

dimensional network with an interstitial spacing occupied by a fluid. These polymers are sensitive 

to the pH value in their aqueous environments. They will expand when alkaline solutions are added 

and contract when acidic solutions are added [18]. 

 Electrically, if polymer gels contain water when a voltage of ≥1.2 V is applied, water 

electrolysis will cause the region near the cathode to become more basic as hydrogen is released 

form water (H2O = H+ + OH-) and OH- is formed in the solution. This causes a bend toward the 

anode [27]. In general, the actuation of polymer gel actuators is very slow (tens of minutes ) and 

the lifetime is very short due to large deformations that damages the electrodes  [7, 18]. 

Poly(acrylonitrate) is one example of an electroactive polymer that expands and contracts in 

alkaline and acidic environments, respectively.   
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1.2.2.4. Ionic Polymer-metal Composite (IPMC) Actuators 

 Ionic polymer-metal composite (IPMC) actuators contain an IPCM sandwiched between 

two thin metal electrodes typically composed of gold or platinum leaf. The IPMC itself consists 

of one polymeric ion-permeable membrane, such as Nafion, covered by two conductive network 

composites (CNCs) [7, 41, 42]; such a configuration is shown in Figure 1-7. The electromechanical 

response in ionic polymer-metal composite actuators is due to the mobility of ions through the 

polymer network. When an electric field is applied, ions move through attraction or repulsion to 

oppositely-charged electrodes. One side will swell by accumulating larger-volume ions, while 

accumulation of small ions on the other side will cause a contraction [7]. These actuators exhibit 

high deformation when small voltages (< 4 volts) are applied and will generate electrical signals 

when subjected to mechanical force due to the movement of charged ions.  More details about 

these actuators will be presented in the next section.  

 

Figure 1-7 : Ionic Polymer-Metal Composite Actuator [42]. 

 Ionic Polymer-metal Composite (IPMC) Actuators 

Ionic polymer-metal composite actuators are a class of smart structures based on polymers. 

IPMC actuators exhibit a high mechanical response to external electrical stimulus. Conversely, 

they produce electrical signals when subjected to mechanical force. These actuators are shown in 

Figure 1-7. For simplicity this type of actuator is also called an ionic electroactive polymer (IEAP) 
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actuator. The backbone of the actuator is the ion permeable polymer (ionomer). The permeability 

of the ionomeric membrane with respect to anions and cations depends on the chemical and 

physical structure of the membrane. Nafion and Flemion are two popular ion-permeable polymers 

used in IPMC actuators.  

Two CNCs are then deposited over both sides of the ionomeric polymer. The CNC layers 

play a significant role in actuator electromechanical behavior. They act as an extra reservoir for 

the electrolyte, and they provide a conductive layer that uniformly distributes electric charge across 

the ionomeric membrane interface. This means that they have a significant interface to and 

interaction with the surrounding ions. Conductivity, thickness, porosity, and pore sizes are 

properties that have a direct influence on the ion mobility related to the actuation magnitude and 

speed [42]. 

Ions are sourced from either an aqueous electrolyte or an ionic liquid (IL). Ionic liquids are 

usually preferred because their near-zero vapor pressure allows longer shelf life, operation in air, 

and higher operating voltages without concern with respect to ionomer hydration or electrolysis of 

water in aqueous electrolytes [43-45].  

Upon attraction or repulsion to the oppositely charged electrodes, ions will accumulate on 

the sides of the actuator and generate a stress. Because of the size difference, one side will swell 

more than the other, resulting in bending. Figure 1-8 shows the accumulation of different-sized 

ions at oppositely-charged electrodes and the resulting bending mechanism. The bending direction 

will be reversed when the polarity of the electric field is changed.  
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Figure 1-8: (a) Neutral case. (b) Accumulation of different-sized ions at oppositely-charged electrodes 

and bending mechanism 

The two outer layers are the electrically-conductive electrodes. Ultra-thin metallic leaf 

layers (usually gold or platinum) are used as electrodes to provide extra conductivity and charge 

distribution, protect the actuator from the environment, and reduce electrolyte losses from the outer 

surfaces. 

The IEAP actuator components will be discussed in detail next. 

1.3.1. Ionomeric membrane  

Ionomeric membranes, also known as ionomers or ion-exchange polymers, typically have 

nonionic repeat units and ionic groups. The ionic groups may be placed either systematically or 

randomly within the polymer chain as end groups or pendant groups. Some of these ionomers are 

called cation exchangers, in which case the ionomer will have negatively-charged ionic groups 

(e.g. SO3
 ̶ ) that can bond with and exchange cations; others are called anion exchangers, in which 

case the ionic groups are positively-charged groups (e.g. NH3
+) that can bond with and exchange 

anions[46].    
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Ion-exchange, ionic selectivity, high elasticity, thermal stability, and water insolubility are 

some of the most important characteristics that make these ionomers useful for many applications. 

For example, proton exchange membranes are used in fuel cells and ionic electroactive actuators. 

Nafion and Flemion are two examples of  ionomers used for electroactive actuators [7]. 

 

1.3.1.1. Nafion  

Nafion was first developed in the 1960s by DuPont and used as electrolyte membranes in 

fuel cells. It is a Teflon-based polymer with short side chains terminated by ionic groups. Nafion’s 

structure is shown in figure 1-9. It has a large tetrafluoroethylene (Teflon) backbone with short 

perfluorovinyl ether side chains terminated with sulfonate (SO3 ̶ ) ionic groups. The polymer is 

shown in the proton (H+) form, but this proton can be substituted by any other cation by soaking 

Nafion in an aqueous solution containing that cation. For this reason, Nafion is categorized as a 

cation-exchanger ionomer[7, 46].  

Nafion has some excellent chemical, mechanical, and thermal properties. It can be cast or 

extruded into a very thin stable film. For example, commercial Nafion 211 has a 0.001̎ (̴ 25.4 µm) 

thickness, a weight of 50 g/m2 , and is capable of elongation to 250% of its original length before 

breaking, making it very suitable for use in thin films and light-weight applications [47]. Nafion 

can also operate in a thermal environment of up to 190ºC, making it very useful for high-

temperature applications [7]. Nafion also has high chemical stability. Under normal temperature 

and pressure, only alkali metals can degrade Nafion. When soaked in IL or aqueous solution, 

Nafion can absorb up to 38 wt% of electrolytes of its dry weight. When Nafion is hydrated, cations 

(e.g. H+) associated with each ionic group can move freely within the polymer matrix. On the other 

hand, anions are covalently fixed to the polymer backbone[27].   

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDgQFjAD&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0022113904000946&ei=WBMiVY_WMIO4sAWt-ILQAQ&usg=AFQjCNFEonBxVV_TTU4VgB6fQhZE16w9bg&sig2=mFlbU4Z6vbAyy9rHnpiVJg


www.manaraa.com

17 

 

 

 

 

Figure 1-9 : Nafion chemical structure 

The most popular model for Nafion structure was presented by Hsu and Gierke in 1982 

[48]. They suggested that Nafion will have a cluster-network structure with channels that allow 

internal movement of ions. In their cluster-network model, they suggested that Nafion has very 

small hollow inverted-micelle spheres connected with nano-channels. When hydrated or soaked 

in ionic liquid, swelling will expand the size of these inverted micelles to have a diameter of 4 nm, 

separated by 5nm, and connected by 1 nm diameter channels. This configuration (shown in Figure 

1-10) minimizes electrostatic repulsion between the ionic groups. 

 

Figure 1-10: Nafion spherical cluster network model[48] 

Another model was proposed by Schmidt-Rohr, et al., in 2007 [49]. In that model, when 

Nafion is hydrated, the authors suggested that, rather than spherical micelles, the structure is made 
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up of 2.4 nm diameter inverted-micelle channels (cylinders) lined with hydrophilic side groups 

and called the water-channel model. This model is shown in Figure 1-11. This model also 

minimizes electrostatic repulsion between the ionic groups. 

  

 

Figure 1-11: Water channel model of Nafion [49] 

In both models, the existence of nano-channels will allow the transport of ions through the 

membrane. Nafion is known as a cation exchanger membrane (especially for protons) and used in 

fuel cells as a proton-permeable membrane. In case of an applied external force such as an electric 

field, anions can also slowly pass though the nano-channels toward the anode[7].   

Flemion and Aquivion are two other examples of ionic membranes used in ionic 

electroactive polymer actuators. Flemion is different from Nafion in that it has carboxylate (COO-

) rather than sulfonate (SO3-) in its ionic group. Wang, et al. [50] and Nemat Nasser, et al. [51] 

have reported that actuators with Flemion instead of Nafion are preferred and perform better in 

ionic electroactive actuators. Aquivion is very similar to Nafion; they both have sulfonate (SO3-) 
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as their end ionic groups. The difference is that Aquivion has shorter side chains. Junhong Lin, et 

al., found that bending actuation is higher in actuators with Aquivion rather than Nafion due to 

better electromechanical coupling between ions and the membrane backbone with shorter side 

chains  [52]. Yet the actuation speed is the same as for Nafion. 

1.3.2. Electrolyte  

Electrolytes are liquids or solutions that contain movable ions. When an electrical field is 

applied, cations move toward the cathode, while anions move toward the anode. Electrolytes can 

be either ionic liquids or solutions containing ions. If the solvent is water, they are called aqueous 

solutions. Both aqueous solutions and ionic liquids are used in IEAP actuators.  

Aqueous electrolytes are solutions of salts, acids, or bases in water. The main problems 

with aqueous solutions used in actuators are: the requirement of lower operating voltage under the 

water hydrolysis voltage limit (which starts at 1.2 V), the short lifespan of the actuator because of 

water evaporation, slow switching speed, and low ionic conductivity [41, 53, 54]. 

Ionic liquids are salts in their liquid form at low temperature. In general, ILs are preferred 

over aqueous solutions because of their superior properties. They have near-zero vapor pressure, 

allowing them to operate in air over a long lifespan. A large number of actuator electromechanical 

cycles before degradation have been reported (up to 1 million cycles at 10Hz) [54]. They can also 

withstand higher voltages without concern about electrolysis of water as in the case of aqueous 

electrolytes; this leads to higher and faster strain values [7, 44, 55]. Substantially higher ion 

concentration in ionic liquids, compared to that of aqueous electrolytes, and a larger Van der Waals 

volume difference between molecular cations and anions (compare to atomic cations and anions 

in aqueous electrolytes) also result in an enhanced performance of IEAP actuators doped with ionic 

liquids compared to those doped with aqueous electrolytes [56]. It has also been observed that 
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transducers with IL of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) 

generated the highest strain response compared with other ILs at the same temperature and applied 

voltage[57]. 

1.3.3.  Conductive Network Composite (CNC) Layer  

Each actuator has two conductive network composite (CNC) layers deposited on both sides 

of the ionomeric polymer. As mentioned before, CNC acts as an extra reservoir for the electrolyte 

and provides a conductive layer that uniformly distributes electric charge across the ionomeric 

membrane interface. Thickness, conductivity, porosity, and pore sizes are properties that directly 

influence ion mobility, which is related to the magnitude and speed of actuation.  

Montazami, R., et al., investigated the thickness dependence of curvature, strain, and 

response time in ionic electroactive polymer actuators fabricated via layer-by-layer assembly [58]. 

They showed that the curvature and net strain of IEAP actuators increase linearly with the 

thickness of the CNC as shown in Figure 1-12. They proposed that this increase in thickness 

increases the volume in which the ions can be stored and thereby leads to higher actuation 

curvature. The actuation time was fairly constant, suggesting that the speed is limited by motion 

of ions through the Nafion membrane.  

 

Figure 1-12 : Curvature dependence on IEAP actuator CNC thickness[58] 
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Montazami, R., et al., conducted another study to determine the effect of CNC conductivity 

on actuation performance [42]. They investigated IEAP actuators with CNCs with different gold 

nanoparticle (AuNP) densities and found that increasing AuNP density increases CNC 

conductivity. The researchers used 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-

Tf) ionic liquid. They showed that cationic strain will increase if AuNPs concentration is increased. 

Cationic actuation is fast bending toward the anode caused by accumulation of cations (EMI+) at 

the cathode. As a result, cationic strain depends on how fast the cations can transit through the 

CNC layers. Nafion is considered to be an excellent cation-permeable polymer. Increasing the 

conductivity of the CNC layers results in more attraction and repulsion of the cations from the 

cathode and anode, producing a larger and faster strain respectively.  

On the other hand, anionic strain is a slow but more effective type of strain resulting from 

accumulation of anionic complexes (Tf −-EMI+-Tf −) with higher Van der Waal volumes. As these 

higher-volume anionic complexes accumulate at the anode, the actuator will bend more strongly 

toward the cathode, canceling the cationic bending. The anionic complexes move slowly in Nafion 

and the overall anionic strain is controlled by their speed, so changing the conductivity of the CNC 

has little or no effect on anionic strain. Cationic and anionic strains for different concentrations of 

AuNPs in CNC are shown in Figure 1-13. 

Akle, et al., studied actuators with different ratios of ruthenium (IV) oxide (RuO2) 

nanoparticles (3-5 nm) and gold powder (Au as gold flakes  ̴ 3µm in length) in the CNC [45]. 

RuO2 has spherical nanoparticles with low conductivity but high specific area (45-60 m2/g), while 

gold flakes have high conductivity but lower specific area (1 m2/g). Increasing RuO2 nanoparticles 

will thus increase the double-layer capacitance that depends on the interfacial area between the 

ionomer and the conductor. Also, with more spherical nanoparticles, the porosity of the CNC will 
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increase [7]. Gold flakes are more conductive but less porous. Akle, et al, controlled the porosity 

by changing the ratio of RuO2 nanoparticles to gold flakes in the CNC. They found that actuators 

with 100% RuO2 nanoparticles and 0% gold flakes exhibited highest strain due to the increase in 

capacitance and porosity. This indicates that the porosity of the CNC is very important even at the 

expense of less conductivity. Porous CNC will allow more ions to go through and generate more 

strain. Figure 1-14 shows the strain for different ratios of RuO2 nanoparticles and gold flakes at 

the same experimental conditions.  

 

 

Figure 1-13 : Cationic and anionic strains for different gold nanoparticles concentration in CNC[42] 
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Figure 1-14: Mechanical strain for different ratio of RuO2 nanoparticles and gold flakes[45]. 

1.3.3.1. Conductive Network Composite (CNC) Fabrication 

As stated before, CNC layers have significant effects on actuation performance. CNCs can 

be fabricated using several methods, including, but not limited to: chemical plating (also called 

impregnation-reduction), direct-assembly plating (direct painting of the CNC on the ionomeric 

membrane), and the layer-by-layer self-assembly technique. The following is a brief discussion of 

these techniques and their advantages and disadvantages. 

  

A) Chemical Plating  

CNC fabrication has a significant effect on actuator performance, and chemical plating is 

one of the CNC and electrode-manufacturing techniques. In this method, the ionomer is first 

soaked in a solution of noble metal salt (e.g., Pt(NH3)4Cl2). Cations of the metal salt solution (e.g., 

[Pt(NH3)4]
+2) can then be exchanged with the cations in the membrane (e.g. protons in Nafion-H). 

The sample is then soaked in a solution of a chemical reductant that cannot penetrate the ionomer 
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(sodium borohydride NaBH4 solution). Metal ions are diffused out and reduced to form an 

interfacial metallic-polymer layer of nanoparticles on the surface of the membrane. The process 

can be repeated to produce thicker layers [59, 60]. Oguro, et al., used this technique to plate gold 

electrodes on a Flemion-Na membrane [61]. In that case he immersed Flemion-Na in a solution of 

gold complex ([AuC12] Cl) to exchange Na+ with gold cations, then reduced that with Na2SO3.  

Layers formed using chemical plating are very dense, reducing the ionic liquid uptake and 

permeability and creating slower and smaller actuation strain [7].  

B) Direct Assembly Process Plating  

CNC Layers can be also directly deposited over the membrane by painting or spin coating. 

Direct assembly-process (DAP) plating is a method proposed by Akle, et al., [62-64] to 

manufacture the CNC and the outer electrodes. In this method, conductor nanoparticles (e.g. RuO2) 

are mixed in an ionomer solution and directly painted over the ionic membrane to form the CNC. 

The membrane with the CNC layers is then sandwiched between two gold leaves and hot-pressed; 

the steps are shown in Figure 1-15. Akle, et al, found that the interfacial area between the 

electrodes and the ionomer can be increased using this method, and the capacitance will also 

increase due the formation of an electric boundary layer on the interface between the ionomer and 

electrode. This increased capacitance will result in better performance. Actuators fabricated using 

this technique perform 2-5 times better (e.g., show higher strain) than actuators fabricated by the 

chemical-reduction technique. The direct-assembly method is also attractive because it allows 

researchers to use a wide range of conductive nanoparticles, including non-metallic powder (e.g. 

carbon nanotubes[64]).  
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Figure 1-15 : Steps for direct assembly CNC manufacturing technique[62] 

C) Layer-by-layer (LbL) self-assembly process 

Although the direct-assembly process is superior to the chemical plating method, it is still 

difficult to obtain a homogenous thickness and to control the thickness using this method. A 

superior method called layer-by-layer (Lbl) self-assembly can be used to manufacture a very thin 

homogenous CNC with precise thickness.  Any species with ionic charges can be used to assemble 

the CNC with this technique. LbL self-assembly also provides better actuator performance than 

the direct-assembly method. Sheng Liu, et al., [57] compared the performance of actuators with 

CNCs fabricated by the LbL  self-assembly technique to the performance of similar actuators 

fabricated through the direct-assembly process. They found that the strain created by LbL actuators 

is about twice the strain from direct-assembly actuators. Furthermore, the LbL actuators responded 

in only 0.18 sec; the direct-assembly actuator took several seconds to respond instead. In our work, 

we mainly used the LbL technique to fabricate CNCs.  
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1.3.3.2. Layer-by-Layer (LbL) self-assembly technique 

In 1966, R. K. Iler developed and introduced the layer-by-layer technique to fabricate a 

thin film using colloidal particles [65]. The film was developed by adding alternate layers from 

positively and negatively charged colloidal particles. In 1992, Decher, et al., [66] used the LbL 

technique to fabricate a polymeric film by alternately immersing a positively-charged solid 

substrate in anionic and cationic polyelectrolytes, respectively. They also found that the thickness 

of the deposited film was linearly dependent on the number of deposited layers. The LbL technique 

for fabricating ultra-thin, homogenous, thickness-controlled polymeric films thus becomes 

attractive. 

In 2009, Liu, et al., [57] used the LbL technique to fabricate the conductive network 

composite (CNC) of ionic electroactive polymer actuators. As mentioned earlier, they were able 

to enhance the IEAP actuator performance by producing faster and higher strain actuators 

compared to actuators with CNCs fabricated by the direct-assembly method. In 2011, Montazami, 

et al., [58] used LbL to study the effect of thickness on IEAP actuator performance. The thickness 

in that study was also linearly dependent on the number of deposited bi-layers.  

The concept of the LbL technique is that layers are formed on a substrate as a consequence 

of being alternately soaked in differently-charged polyelectrolytes or solutions of charged 

nanoparticles. Experimental results have shown that IEAP actuators with higher porosity and 

conductivity perform better. Actuators that use gold nanoparticles (AuNPs) and poly(allylamine 

hydrochloride) (PAH) to form the CNC have excellent porosity and actuation performance [67]. 

In our work, we mainly adopted the LbL technique and used gold nanoparticles and PAH to form 

the actuator CNCs. Figure 1-16 shows the steps of CNC fabrication. A substrate with a specific 

electric charge is first soaked in an ionic solution with oppositely-charged molecules. Oppositely-

javascript:searchAuthor('G.%20Decher')
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charged molecules are attracted to the charged substrate to form an ultra-thin layer. The substrate 

is then rinsed to remove the unbound and loosely-bound molecules. The substrate is next soaked 

in an ionic solution with oppositely-charged molecules to form a second layer, and will then be 

rinsed again to complete a full cycle.  One full cycle will form a bi-layer with a specific, nano-

scale thickness. To produce a thicker CNC, the cycle is repeated until the desired thickness is 

attained; this thickness is linearly dependent on the number of deposited bi-layers. 

 

Figure 1-16: Layer-by-Layer CNC depositing technique using gold nanoparticles and PAH [56] 

1.3.4. Metallic Outer Electrodes  

The outer electrodes are highly electrically-conductive materials attached to both sides of 

the actuator. For best performance, electrodes should adhere well to the ionic polymer, be highly 

conductive, have high ductility and flexibility, cover a large electrochemical interfacial area, and 

be non-toxic [27]. The electrodes should be very thin to provide the desired actuator flexibility. 

Gold and platinum noble metals are usually used as electrodes. Oguro, et al., first noted the bending 



www.manaraa.com

28 

 

 

 

response of a Nafion membrane when coated with platinum [27]. In 1999, Oguro, et al., [61] used 

gold instead of platinum electrodes for IEAP actuators. They found that gold electrodes obtained 

a higher strain, without gas evolution, than platinum electrodes. Other materials such as copper 

[68], silver [69], palladium [70], and carbon nanotubes [71] have also been used. Metallic-leaf 

electrodes can be hot-pressed to both sides of the actuator. Electrodes can be also chemically plated 

[59], electroplated [72], or sprayed [73]. Electrodes uniformly distribute the electric charge across 

the actuator to provide a uniform deformation and serve as a protective layer to both protect the 

actuator from moisture and to block the electrolyte from escaping. In our work, we hot-pressed 

gold leaf as electrodes on both sides of the actuator. Figure 1-17 shows an IEAP actuator with hot-

pressed gold electrodes.   

 

Figure 1-17: Hot-pressed gold electrodes 

 Document Organization 

Chapter 2 describes the experimental methods and procedures that were used in 

conducting and analyzing the research projects that were reported in this dissertation. It describes 

the materials, samples fabrication process, and the experimental procedures in the research projects 
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in details. This includes snapshots and figures of all the equipment and materials with step by step 

description of sample fabrication and experimental procedures.   

In CHAPTER 3, we investigated the influence of ionic liquid uptake percentage on the 

electromechanical performance of IEAP actuators. Ionic liquid uptake was increased from 10% of 

the membrane mass to 30%. The maximum strain was then measured and compared. We expected 

a higher strain by increasing the ionic liquid uptake as more accumulation of the ions at the 

electrodes will induce a higher stress and as a result a higher strain. The results showed a maximum 

peak at about 22% ionic liquid uptake and less strain at higher and lower uptakes. 

CHAPTER 4 presents a study about the effect of changing the morphology of the soft 

composite on the sensing performance of IEAP stress sensors. Adding NACL (salt) during the 

manufacturing of the CNC improved the IEAP’s sensing. NACL caused a higher thickness and 

higher porosity of the CNC, which improved the ions’ mobility and the sensing signal of the IEAP 

stress sensor. 

A tunable non-linear angular deformation, or limb-like motion, was achieved in the study 

presented in CHAPTER 5 by adding patterns of conjugated polymers to the CNC of the IEAP 

actuators. The conjugated polymer patterns allowed us to control ion permeability of the soft 

actuator and thus the deformation shape. Actuators bent at sharp angles (90º and beyond) and 

exhibited limb-like deformation. 

In CHAPTER 6, the influence of the temperature on electromechanical behavior of ionic 

polymer-metal composites (IPMCs) actuators was investigated. Actuators were tested at room 

temperature and at temperatures from 30 ºC to 70 ºC with increments of 10 ºC. Actuators were 

expected to deform more and curve more as temperature increases. The results instead showed a 
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less cationic curvature as temperature increased and a higher anionic curvature with a peak at 50 

ºC followed by a sudden decrease. Both cationic and anionic deformations rates decreased with 

increasing temperature up to 50 ºC with a sudden increase again at 60 ºC. Deformation slowed at 

70 ºC with no practical deformation at higher temperatures. 

CHAPTER 7 presents a study to explore the ionic conductivity of Nafion membranes with 

different exchanged counterions with different Van der Waals volume at different temperatures. 

The influence of Van der Waals volume of counterions and temperature on the ionic conductivity 

was investigated and a direct correlation between ionic conductivity and both temperature and Van 

der Waals volume of counterions was observed. Ionic conductivity increased by increasing the 

counterion size and increasing temperature. 

Chapter 8 presents the overall conclusions and suggested future work. 
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 EXPERIMENTAL METHODS AND 

PROCEDURES 
 

This chapter describes the materials, fabrication process, and the experimental procedures 

used in the research projects reported in this dissertation. Section 2.1 defines and describes all the 

materials, equipment, and the fabrication process. Section 2.2 describes the experimental 

procedures for different experiments. The procedure to characterize actuation performance is 

described in 2.2.1, and that for the sensing performance is described in 2.2.2, the procedure for 

electrochemical characterization is described in 2.2.3, testing as a function of temperatures is 

described in 2.2.4, and finally, the procedure for ion exchange is described in 2.2.5.  

 Materials and fabrication process   

2.1.1. Materials  

Nafion (sulfonated tetrafluoroethylene based fluoropolymer-copolymer) of 25 µm 

thickness (NR-211, IonPower) was used as the ionomer membrane. In most experiments, Nafion 

was used in its acidic form where protons (H+) are the counter ions attached to the sulfonic acid 

groups. The acidic form of Nafion is shown in Figure 2.1. In some experiments, the proton 

counterions were substituted by other ions through an ion exchange process. 1-ethyl-3-

methylimidazolium trifluoromethanesulfonate (EMI-Tf molecular formula, C7H11F3N2O3S) 

(Sigma-Aldrich) ionic liquid (IL) was used as the sources of mobile ions for actuation, sensing, 

and electrochemical characterizations. Poly(allylamine hydrochloride) polycation (PAH+), 

chemical structure [CH2CH(CH2NH2.HCl]n, , and anionic functionalized gold nanoparticle 

(AuNPs) (∼3 nm diameter, Purest Colloids Inc),  were used to form the conductive network 

composites (CNCs) on both sides of the Nafion membranes using a StratoSequence 6 (NanoStarta 

Inc) automated thin-film fabrication robot. Gold leaves of 50 nm thickness (24K, transfer, LA 

Gold Leaf) were used as the outer electrodes. 

https://en.wikipedia.org/wiki/Tetrafluoroethylene
https://en.wikipedia.org/wiki/Fluoropolymer
https://en.wikipedia.org/wiki/Copolymer
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Figure 2-1 Nafion’s chemical structure (http://www.nafionstore.com/) 

2.1.2. Fabrication procedure: 

Fabrication of IEAP transducer can be divided into four main steps as follows:  

 

Step1: Preparation of materials and chemical solutions: 

The 25 μm Nafion membrane, as received, is protected with two outer plastic films to 

protect the membrane and facilitate its storage and handling.  The process starts by cutting a 

rectangular piece (2cm × 5cm) of the Nafion membrane and soak it in deionized (DI) water for 

approximately 10 minutes to remove the protective films. After 10 minutes, the two protective 

films will be carefully removed and Nafion membrane will be dried by placing it between two 

papers to absorb the moisture. The dried Nafion membrane is then fixed by double sided adhesive 

tape on a glass frame that is designed to hold the sample during the deposition of the CNC on both 

sides of the membrane using the automated layer by layer (LBL) dipping robot. The glass frames 

(as shown in Figure 2.2) are made from ordinary microscope glass slides after cutting a rectangular 

piece from them to expose the Nafion membranes to the dipping solutions during the layering 

process to form the CNC. The glass frame with the Nafion will be then soaked in water while 

preparing the AuNPs/PAH solutions, which will make the Nafion membrane negatively charged.   

The next step is to prepare a 140 ml of 10 mM concentration of PAH and adjust the pH to 

4.0 (this will serve as the cationic or the positively charged polyelectrolyte) and a 140 ml AuNPs 

of 20 ppm concentration of functionalized gold nanoparticles (AuNPs, ∼3 nm diameter) and adjust 

the pH to 9.0 (this will serve as the anionic or the negatively charged solution). 
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Figure 2-2: Glass frame used to hold the membrane during LbL ionic self-assembly process (left). Nafion 

membrane attached to a glass frame (right) 

 

Step 2: Using the dipping robot to deposit the layers using the Layer by layer technique  

 

In this step, an automatic dipping robot (StratoSequence 6, NanoStarta Inc.) will be used 

to form the CNC using the LBL technique. This robot can hold 8 (140 ml) beakers. Two of them 

will be used for the 10 mM concentration cationic PAH and the 20 ppm anionic AuNPs solution. 

The remaining 6 beakers will be filled with deionized water to rinse the membrane after each 

deposition with PAH and/or AuNPs. 

The process starts with arranging the beakers so that the deposition will start with the 

positively charged PAH to form the first layer over the negatively charged Nafion, the membrane 

is set to rotate in PAH solution for 5 minutes. Three beakers of DI water will be placed in the 

consecutive spots to the PAH beaker to rinse the membrane after deposition the PAH layer, three 

rinsing steps for 1 min each will be required after each deposition. The negatively charged AuNPs 

solution beaker will be placed after the three rinsing water beakers. The membrane should also 

rotate in AuNPs solution for 5 minutes. Another 3 beakers of DI water will be placed in the 

consecutive spots the AuNPs container to rinse the membrane after deposition the AuNPs layer. 

The dipping robot and the beakers arrangement are shown in Figure 2.3. These steps will be 

repeated for more bi-layers. Each full cycle will deposit one bi-layer of PAH and AuNPs. The 

dipping machine is controlled by StratoSmart software that is installed on the computer connected 

to the machine. The setup of the StratoSmart software for depositing 20 bi-layers of the CNC is 

shown in Figure 2.4. Figure 2.5 shows a Nafion membrane before and after 20 bi-layers 
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formations. It is also important to change the solutions periodically when the concentration of the 

chemical solutions decrease. The DI water will be replaced automatically at each dipping cycle. 

 

Figure 2-3: dipping robot and beakers arrangement 

 

Figure 2-4: StratoSmart software setup for depositing of 20 bi-layers of CNC on Nafion membranes. 
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Figure 2-5: Pure Nafion (left) and Nafion membrane with 20 bi-layers CNC (right) 

Step 3: Soaking the membrane in ionic liquid  

The produced membrane from the previous step will be cut and weighted using a 

microbalance. Then, the membrane with the bi-layers will be soaked in IL for a specific time 

depending on the desired IL uptake. Increasing the temperature of IL bath (~80 ˚C) expedites the 

intake.  

After soaking, the membrane will be taken out with plastic tweezers and excess IL will be 

dried by placing it between papers before weighting. The weight percentage of the IL weight 

percentage (wt%) can be then calculated using equation 2.1. 

IL (wt%) =  
𝑤𝑓𝑖𝑛𝑎𝑙 − 𝑤𝑖𝑛𝑖𝑡𝑙𝑎𝑙

𝑤𝑓𝑖𝑛𝑎𝑙
× 100%                          (2.1) 

where 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑤𝑓𝑖𝑛𝑎𝑙 are the weight of the Nafion membrane in dry and IL impregnated 

forms, respectively.  

Step 4: Hot press gold leaves on both sides of the membrane   

The last step is to hot press gold leaves on both sides of the swollen membrane. Two 50 

nm thick gold leaves will be cut slightly larger than the Nafion membrane. The membrane will be 

then placed between the two gold leaves and pressed using a 25T hydraulic hot press machine 

(MTI Corporation) at 95 ˚C under ~100 KN of force for about 40 seconds. Gold leaves will serve 

as the external electrodes on the two sides of the samples. Figure 2.6 shows the 25T hydraulic hot 

press machine and the final fabricated actuator which will be cut later to smaller 1mm × 1 cm 

actuators for characterization and testing.  
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Figure 2-6: 25T hydraulic hot press machine (left), final hot pressed membrane (right, upper), and 

actuators to be tested (right, lower) 

 Characterizations  

2.2.1. Actuation performance characterization  

The fabricated actuators will be fixed between two titanium electrodes that are connected 

to a power supply. A 4V DC potential will be applied across the thickness of the actuators through 

the titanium electrodes. A digital oscilloscope will be used to monitor any short circuit in the 

system and record the applied potential. The electromechanical actuation will be then recorded by 

a camera and the radius of curvature as a function of time will be measured for further analysis 

and strain calculation. The actuation process is shown in Figure 2.7. The actuators will be first on 
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neutral position before applying the 4V DC potential difference (Figure 2.7 (A) ) and will then 

start to move toward the anode (cationic bending, Figure 2.7 (B) ) and go back slowly toward the 

cathode with a higher bending magnitude (anionic bending, Figure 2.7 (C) ). The cationic bending 

and anionic bending are described in section 1.3.3. The entire process is shown in Figure 2.7 (D).  

Equation (2.2) will be then used to calculate the bending strain. 

ε(%) =
ℎ

2𝑟
× 100                                     (2.2) 

where r representing the radius of curvature depending on the extent of bending and h 

representing the thickness of the actuators. 

 

 

Figure 2-7: Actuation Process. Neutral position (A), Cationic Curvature (B), Anionic curvature (C), and 

the time lapse for the whole actuation process (D). 

2.2.2. Sensing performance characterization 
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The fabricate sensors of about 1 cm × 1 cm will be enclosed by two copper foil electrodes 

on both sides of the sensors. Copper electrodes were used here because they have a better physical 

robustness than gold leaves electrodes as sensors will be exposes to a dynamic impact during 

testing which will break the gold leaves electrodes. The copper electrodes will then be connected 

to a digital phosphor oscilloscope to record the generated voltage. To generate an electrical signal, 

the sensor will be disturbed by a dynamic impact generated by a motorized mechanical arm with 

a controllable and constant impact frequency. The sensing setup scheme and the generated signal 

are shown in Figure 2-8. 

 

Figure 2-8: Sensing process. (A) The experimental setup. (B) The generated signal. 
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2.2.3. Electrochemical characterization 

Electrochemical properties of the Nafion membranes, including electrical impedance, 

current flow, capacitance, etc., were characterized using a VersaSTAT-4 potentiostat (Princeton 

Applied Research) which is shown in Figure 2.9. The process starts by cutting a sample of 1.2 cm 

× 1.2 cm from the membranes and place it between two 1 cm × 1 cm copper electrodes that were 

glued to two separate glass substrates as shown in Figure 2.10. The copper electrodes will then be 

connected to the potentiostat. The potentiostat software contains several experiment options 

(actions) to choose from as shown in Figure 2.11. 

 

Figure 2-9: VersaSTAT-4 potentiostat 

 

Figure 2-10: Nafion membrane between two copper electrodes 
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Figure 2-11: Different electrochemical experiments from potentiostat software. 

After selecting the appropriate action, the experimental conditions will be added in another 

window where for example the applied potential, starting and ending applied frequency, duration 

of the selected test, the applied current, etc. can be entered. An example of this setup, for an 

impedance test, with 100 kHz starting frequency, 0.1 Hz ending frequency, and 10 mV applied 

potential is shown in Figure 2.12.  

 

Figure 2-12: Impedance test experimental properties from potentiostat software  
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After determining the experimental conditions, appropriate ways to represent the data are 

selected from a list of available graph templates. Some examples of the available graphs and data 

are shown in Figure 2.13.  

 

Figure 2-13: Examples of electrochemical data that can be extracted from the VersaSTAT-4 potentiostat 

2.2.4. Characterization of electromechanical behavior as a function of temperature  

Two different procedures are used to test actuators or membranes at different temperatures 

depending on the type of the experiment as follows.  

2.2.4.1. Testing the actuation process in air at different temperatures 

The procedure for this experiment is similar to the procedure described in 2.2.1. In addition 

to the steps in 2.2.1, the experiment is conducted in an in-house fabricated temperature-controlled 

chamber for thermal isolation. The actuators are mounted with a clearance of 5 cm of a manually 

temperature controlled resistive heater that will be used to raise the temperature inside the 

chamber. The temperature around the actuator is measured by a thermocouple when a uniform and 

stable temperature across the chamber is achieved. The actuation performance will be recorded 

and analyzed at the desired temperatures. The experimental setup is shown in Figure 2.14. 
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Figure 2-14: Actuation performance at different temperatures in air setup. 

 

2.2.4.2. Testing electrochemical properties at different temperatures  

For electrochemical characterizations as a function of temperature, the procedure is similar 

to the procedure in section 2.2.3. In addition to the steps in 2.2.3, hot glue is used to seal the edges 

of the glass substrates before submerging it into a temperature-controlled water bath. A hot plate 

(Corning 5×7 in2 PC-420D) with temperature feedback control is used to achieve the desired 

temperature in the water bath and a mercury thermometer is used to measure the actual temperature 

to increase confidence. It is easier and more accurate to control and achieve the desired 

temperatures using a hot water bath, but this method is not suitable for actuation process as 

actuators shall operate in air.   

 

Figure 2-15: Water proof samples using hot glue to seal the edges of the glass substrates (left), 

submerged samples in hot water at the desired temperature to be tested (right). 
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2.2.5. Ion exchange procedure  

For specific experiments, the proton counterions in acidic Nafion need to be substituted by 

other ions. The preparation of samples will start by exchanging the protons in Nafion with one of 

the counterions to be tested. This can be achieved by boiling Nafion membranes in 1.0 M sulfuric 

acid for 120 minutes, followed by boiling in DI water for 120 minutes. The membranes will be 

then exchanged from the proton form to one of the counterions forms by soaking in 0.5 M aqueous 

salt solution of the desired ion for two days at 80 ºC, followed by eight days at 60 ºC. One example 

is Nafion-Lithium (Nafion-Li) form, where in this case the Nafion membrane will be soaked in 

lithium chloride salt solution flowing the steps above. After that, the membrane will be rinsed 

thoroughly and soaked in DI water for 3 hours to remove any excess salt and then dehydrated in a 

vacuum oven (110 ºC, -100 kPa) for 3 days. The dehydrated membrane will be then impregnated 

by soaking in EMI-Tf for 48 hours at 80 ºC and then cut into 1 × 1 cm2 samples for testing.  
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 INFLUENCE OF IONIC LIQUID CONCENTRATION ON THE 

ELECTROMECHANICAL PERFORMANCE OF IONIC ELECTROACTIVE 

POLYMER ACTUATORS 
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Abstract 

We have investigated the influence of ionic liquid concentration on the electromechanical 

response of ionic electroactive polymer actuators. Actuators were fabricated from ionomeric 

membrane and doped with different concentrations of 1-ethyl-3-methylimidazolium 

trifluoromethanesulfonate ionic liquid. Samples were investigated for their electromechanical and 

electrochemical characteristics; and it was observed that the maximum electromechanical strain of 

approximately 1.4% is achieved at 22 wt% ionic liquid content. Increasing ionic liquid 

concentration results in saturation of the electrode–ionomer interface and formation of ionic 

double/multi layers, which in turn result in an inward accumulation of ions; hence, generate strain 

in an undesired direction that deteriorates the electromechanical response of the actuator. 

                                                 
1 The publisher of this journal “Elsevier “, allows the students to include the work in their thesis or dissertation if 

this is not to be published commercially. 
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 Introduction 

Recently, electroactive polymers have received immense attention and interest from the 

materials community because of their applicability to actuators, sensors and haptics [1–3]. 

Electroactive polymers are soft and lightweight; hence, enable the realization of biomimetic and 

micro-robotic devices. Among wide variety of electroactive polymers, ionic electroactive 

polymers (IEAP) have proven more practical for actuator applications due to their substantially 

low operation voltage (typically <5 V), light weight, relatively large strain, and bending (instead 

of linear) deformation [4,5]. 

IEAP actuators comprise of an ionomer membrane that is doped with an ion-rich electrolyte 

and coated with electrodes on each surface [6,7]. The electromechanical response is upon 

attraction/repulsion of ions and their accumulation at the oppositely charged electrode when 

subjected to an external electric field. Due to the volume difference between cations and anions, 

cathode and anode swell to different extents, thus a volume imbalance is generated in the actuator, 

which in turn causes a mechanical deformation. Change in the polarity of the electric field reverse 

the process and direction of bending [8–14]. 

Ions are sourced by either an aqueous electrolyte or ionic liquid (IL). Ionic liquids are 

preferred as their near zero vapor pressure allows longer shelf life, operation in air, and higher 

operation voltages without concerns about ionomer hydration or electrolysis of water in aqueous 

electrolytes [15–17]. Also, substantially higher ion concentration in ionic liquids, compare to that 

of aqueous electrolytes, and larger Van der Waals volume difference between molecular cations 

and anions (compare to atomic cations and anions in aqueous electrolytes) result in an enhanced 

performance of IEAP actuators doped with ionic liquids, compare to those doped with aqueous 

electrolytes. These characteristics along with scalable manufacturing and flexibility in design 
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allow integration of IEAP actuators in flexible organic electronics, micro-robotics, biomimetic 

devices and bioelectronics [18].  

In the present study, we have demonstrated that the electromechanical performance of 

IEAP actuators is influenced by the concentration of the ionic liquid and that the concentration of 

ionic liquids can be tuned to achieve maximum actuation performance. Ionic liquids concentration 

in IEAP actuators was varied while electromechanical and electrochemical properties were 

characterized. It is shown that the ionic liquid concentration can be used as a means to control, 

improve and optimize actuation performance; and that at high concentrations of ionic liquid an 

ionic double/ multi-layer forms at the ionomer–electrode interface which deteriorate the actuation 

strain. 

 Materials and Methods  

3.2.1. Sample Preparation  

Commercially available Nafion membrane of 25 µm thickness (Ion Power Inc, DE-USA) 

was used as the ionomeric membrane. To fabricate IPMCs, nanocomposites of the polycation 

poly(allylamine hydrochloride) (PAH) (Sigma-Aldrich, MO-USA) and anionic functionalized 

gold nanoparticle (AuNPs) ((∼3 nm diameter, Purest Colloids Inc, NJ-USA) were grown on both 

sides of the Nafion membrane via LbL deposition of the ionic species, using a StratoSequence 6 

(NanoStarta Inc, FL-USA) automated thin-film fabrication robot. The substrates were alternately 

immersed for 5 min each in aqueous solutions of PAH at a concentration of 10 mM at pH 4.0 and 

AuNPs at a concentration of 20 ppm at pH 9.0 with three rinsing steps for 1 min each in de-ionized 

water after each deposition step. IPMCs were then soaked with 1-ethyl-3-methylimidazolium 

trifluoromethanesulfonate (EMI-Tf molecular formula: C7H11F3N2O3S) (Sigma-Aldrich, MO-

USA) ionic liquid at 80 ºC for various durations of time to intake desired concentrations of ionic 
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liquid. Ionic liquid content was measured as the weigh percentage (wt%) of dry weight of the 

membrane, and calculated from Equation (3-1). 

𝑤𝑒(%) =
𝑤𝑓 − 𝑤𝑑

𝑤𝑓
× 100%                                                            (3-3-1)      

where We (%) is the weight-percent of the electrolyte; and, Wd and Wf are the weights of dry and 

doped samples, respectively. Gold leaf electrodes of 50 nm thickness were then hot-pressed at 95 

ºC under 1000 lbf for 25 s on both sides of the membrane to form IEAP actuators. 

3.2.2. Electrochemical characterization 

Impedance spectroscopy and current flow were measured and recorded using a 

VersaSTAT-4 potentiostat (Princeton Applied Research, IL-USA). The impedance spectroscopy 

studies were carried at frequencies between 1.0E5 Hz and 0.1 Hz, and a potential difference (ΔV) 

of 10 mV. Current flow was monitored in response to a ±4 V step potential over 60 s intervals. 

Electrical conductivity (σ) of the doped membranes was calculated from Equation (3-2), 

𝜎 =
ℎ

𝑅𝐴
                                                                    (3-3-2)                

based on the geometry of the membranes where h and A represent thickness and area of the 

membrane, respectively; and R is the resistance deduced from impedance spectroscopy 

measurements. 

3.2.3. Electromechanical characterization 

Actuators were cut into approximately 1.5 × 15 mm2 pieces and tested under application 

of a 4 V step potential. Electromechanical response of the actuators was monitored and recorded 

using a charge-coupled device (CCD) video camera, mounted to an in-house fabricated microprobe 

station, at 30 fps. Individual frames were then analyzed to measure the radius of curvature as a 



www.manaraa.com

53 

 

 

 

function of time (r(t)) and to calculate (Q(t)) and strain (ε%(t)) values from Equations (3-3) and 

(3-4), respectively; where Q, ε and h are curvature, strain and thickness of the actuator, 

respectively. 

𝑄(𝑡) =
1

𝑟(𝑡)
                                                                        (3-3-3)                            

𝜀%(𝑡) =
ℎ

2𝑟(𝑡)
                                                                    (3-3-4)                             

  Results and discussions  

3.3.1. Current flow 

Current flow corresponding to a 4 V potential difference between the outer electrodes was 

measured and recorded as a function of time. As presented in Figure 3-1, magnitude of displaced 

charge (area under the curve) increases with the increasing concentration of ionic liquid in the 

samples; suggesting that first, current flow is due to mobilized ions; and second, more ions are 

displaced in samples containing higher concentration of ionic liquid. After approximately 55 s (see 

55 < t < 60 and 115 < t < 120 on Figure 3-1) all curves have asymptotically reach the x-axis 

(approximately zero current) indicating that the system is fully charged. 

 

Figure 3-1: Charging and discharging currents for samples containing different. 
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3.3.2. Electromechanical Response 

The electromechanical responses of IEAP actuators to an external electric signal of 4 V 

were monitored and recorded at a rate of 30 frames/second. Sequential digital images were used 

to deduce r(t) and to calculate Q(t) and ε%(t) of each IEAP actuator. Presented in Figure 3-2 is the 

maximum actuation curvature and strain as a function of ionic liquid concentration. The 

electromechanical response showed enhancement as the concentration of ionic liquid was 

increased from 0 to 22 wt%, and was followed by a sharp decline at higher concentrations. The 

initial incline between 0 and 22 wt% of ionic liquid is devoted to increased concentration of ions 

at the interface of the outer electrodes. As ion concentration is increased, so does the extent of the 

swelling at each electrode, resulting a larger volume imbalance between the two electrodes, which 

in turn results a larger mechanical actuation. Data suggest that above 22 wt% of ionic liquid intake, 

a secondary layer of charge is formed at the inner side of the initial ion layer (not at the electrode 

interface) which not only does not contribute toward actuation, it cancels some of the strain 

generated by the first ion layer which is at the electrode interface. Once this secondary ion layer is 

formed, addition of more ionic liquid worsens the electromechanical response. 

 

Figure 3-2: Actuation curvatures (primary y-axis) and strain (secondary y-axis) of IEAP actuators in 

response to a 4 V step potential is presented as a function of EMI-Tf ionic liquid concentration. 
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3.3.3. Electrochemical Studies 

To investigate how does the concentration of ionic liquid affect the frequency response of 

the IEAP actuators, electrical impedance of the IEAP actuators was measured as a function of 

frequency. Electrochemical studies were conducted at lower voltage of 0.1 V, instead of 4 V 

applied for electromechanical response studies, to allow characterization over a broader frequency 

range, with required accuracy. It must be noted that using a higher, or different, applied potential 

results in different numerical values; however, trends and conclusions drawn from the 

experimental results would not be changed.  

Presented in Figure 3-3 are the curves of Nyquist plot for the IEAP actuators. At higher 

frequencies (close to the origin of the x-axis) the electrochemical systems exhibited near-pure 

resistance behavior. Intersection of the semicircular plots with the x-axis, at high frequency regions 

manifests the solution resistance (R), as presented in the equivalent electrical circuit (Figure 3-5). 

Solution resistance depended on the ionic conductivity of the entire system including the 

transportation of ions between anode and cathode.  

 

Figure 3-3: Nyquist plot of impedance magnitude of IEAP actuators containing various concentrations of 

ionic liquid. Solution resistance is deduced from the intersection of plots with the Zre axis 
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Solution resistance of samples, presented in Figure 3-3, suggests that the addition of ionic 

liquids results in the reduction of solution resistance, an observation that is in agreement with 

expected effect of any ion-rich electrolyte, such as ionic liquids. Solution resistance and ionic 

conductivity of IPMCs are listed in Table 3-1. 

Table 3-1:Solution resistance and ionic conductivity of IPMCs containing different concentrations of 

ionic liquid. 

ILs (wt%) h (µm) A (cm2) R (Ω) σ (S.cm-1) 

10 25 1 2081.5 1.2E-6 

16 25 1 99.5 2.5E-5 

22 25 1 26.7 9.4E-5 

26 25 1 11.5 2.2E-4 

29 25 1 7.8 3.2E-4 

 

Figure 3-4 presents electrical impedance magnitude |Z| and phase angle (ϕ ) of IEAP 

actuators as a function of ionic liquid concentration. At frequencies smaller than 100Hz the 

magnitude of electrical impedance is relatively independent of ionic liquid concentration; 

however, at faster frequencies for samples containing more than 10 wt% ionic liquids a sharp 

decrease in |Z| is observed. It is only at very high frequencies that the magnitude of electrical 

impedance exhibits full dependence on ionic liquid concentration. In general, for an IEAP actuator 

to deliver a large strain and force output, a large capacitance is preferred. The electrical impedance 

(Z = |Z| exp(-jϕ )) is a function of the phase angle ϕ , which itself depends on frequency, and can 

be deduced from tan ϕ  = 1/ωRSCS, where RS and CS are the system’s net resistance and 

capacitance, respectively. Phase angles of ϕ  = 90° corresponds to a pure capacitor and ϕ  = 0° to 

a pure resistor (which would indicate the electrical impedance of the resistor is much larger than 



www.manaraa.com

57 

 

 

 

that of the capacitor). Since the resistive component represents the electrical loss, a ϕ  approaching 

90° is preferred in order to achieve a high electrical efficiency of the actuator. A larger ϕ  was 

observed for IEAP actuators containing higher concentrations of ionic liquid. At higher 

frequencies, the difference in phase angles as a function of ionic liquid concentration became more 

distinct, suggesting stronger capacitance-like behavior for samples with higher ionic liquid 

concentration.   

  

(a) (b) 

Figure 3-4 : (a) Impedance magnitude versus frequency; and, (b) phase angle versus frequency of IEAP 

actuator       containing different ionic liquid concentration. At higher frequencies, impedance and phase 

angle exhibit higher dependency on ionic liquid concentration. 

As a result of ion accumulation at the outer electrodes an electric double layer (EDL) 

capacitor is formed at the interface between the ionomeric polymer membranes (Nafion in this 

study) and the outer electrodes. This EDL capacitor and the solution (leakage) resistance of IEAP 

actuators can be used to model electrochemical behavior of such systems by an equivalent 

electrical circuit. Previously we have shown that due to a continuous contribution to the charging 

and discharging current of a diffuse layer, an ideal RC circuit does not fit the experimental results 

well at the low frequencies [19]. Therefore, a constant phase element, Warburg element (W), is 

introduced by the assumption of a semi-infinite linear diffusion process at the planar electrode[12, 
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20-22]. Presented in Figure 3-5 is the equivalent electrical circuit where the two C-W components 

present outer electrode-ionomeric membrane interfaces and R is the solution resistance. Data from 

the real part of impedance was used to test the model at low frequency range. Electrochemical 

behavior of this system at high frequency can be fitted with a simple RC circuit; however, at lower 

frequencies (f <100kHz) the Warburg element is required to provide an accurate model. 

 

Figure 3-5 : Equivalent electric circuit with Warburg element. 

As a constant phase element, the Warburg element has an explicit expression of Zw =

(1 𝑌0⁄ )(𝑗𝜔)−𝑛, where 𝑌0 is a coefficient with unit of Ω−1 ∙ 𝑠𝑛, 𝜔 is angular frequency (rad s−1), 

and n is a unit-less coefficient and equal to 0.5. 

Impedance of the equivalent circuit can be expressed as: 

𝑍 = 𝑅 + 2 ×
1

𝑗𝜔𝐶 + 𝑌0(𝑗𝜔)𝑛
                                                (3-3-5)                       

Which can be expanded by Euler’s equation to: 

𝑍 =  𝑅 +
2𝑌0𝜔𝑛𝑐𝑜𝑠 (

𝑛𝜋
2 )

𝑌0
2𝜔2𝑛 + 𝜔2𝐶2 + 2𝜔𝑛+1𝐶𝑌0𝑠𝑖𝑛 (

𝑛𝜋
2 )

− 𝑗
2 [𝜔𝐶 + 𝑌0𝜔𝑛 𝑠𝑖𝑛 (

𝑛𝜋
2 )]

𝑌0
2𝜔2𝑛 + 𝜔2𝐶2 + 2𝜔𝑛+1𝐶𝑌0 𝑠𝑖𝑛 (

𝑛𝜋
2 )

           (3-3-6)    

W
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C C
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where the net real resistance of the system (RS) can be expressed as the sum of the leakage 

resistance (R) and real part of the impedance (Zre): 

𝑅𝑠 = 𝑅 +
2𝑌0𝜔𝑛 𝑐𝑜𝑠 (

𝑛𝜋
2 )

𝑌0
2𝜔2𝑛 + 𝜔2𝐶2 + 2𝜔𝑛+1𝐶𝑌0 𝑠𝑖𝑛 (

𝑛𝜋
2 )

                                      (3-3-7)      

which can be reorganized to: 

1

𝑅𝑠 − 𝑅
=

𝑌0𝜔𝑛

2𝑐𝑜𝑠 (
𝑛𝜋
2 )

+
𝐶2𝜔2−𝑛

2𝑌0𝑐𝑜𝑠 (
𝑛𝜋
2 )

+ 𝜔𝐶𝑡𝑎𝑛 (
𝑛𝜋

2
)                                (3-3-8) 

and for n = 0.5 can be rewritten as:  

1

𝑅𝑠 − 𝑅
=

√2

2

𝐶2

𝑌0
𝜔1.5 + 𝐶𝜔 +

√2

2
𝑌0𝜔0.5                                                       (3-3-9) 

and simplified to: 

𝑦 = 𝑎𝑥1.5 + 𝑏𝑥 +
𝑏2

2𝑎
𝑥0.5                (3-3-10) 

where  

𝑎 =
√2

2

𝐶2

𝑌0
,   𝑏 = 𝐶                           (3-3-11) 

Experimental data fitted with computational data are shown in Figure 3-6, confirming 

viability of the presented electrical equivalent circuit; and, that the net real resistance of the 

system decreases as concentration of ionic liquid increases. 
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Figure 3-6: The plots of 1/(𝑅𝑠 − 𝑅) versus 𝜔 with various ILs intake and their corresponding fitting 

lines with 𝑦 = 𝑎𝑥1.5 + 𝑏𝑥 + 𝑏2𝑥0.5/(2𝑎). 

3.3.4. Discussion  

It was observed in this study that the internal resistance of IEAP actuators is inversely 

proportional to the ionic liquid concentration. Samples containing higher concentrations of ionic 

liquid also exhibit more capacitor-like behavior, which in turn should result in larger 

electromechanical response.  However, electromechanical studies indicated that there exists an 

optimum concentration of ions at which the electromechanical response is maximized, and that 

optimum concentration is not the highest ion concentration. The observed drop in 

electromechanical response beyond optimum concentration of ions is dedicated to formation of a 

saturated ion layer at outer electrodes interfaces. As a result, swelling due to accumulation of ions 

is shifted from the edge (which is most effective in generation of electromechanical response) 
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toward the center of the system (where its effect is no desired). Similar behavior is reported by 

Kwon and Ng [23] where the concentration of ionic liquid in gel electrolyte was varied. Our 

investigation suggests that for applications where high charge displacement is desired (e.g. supper 

capacitors, sensors, etc.) increasing concentration of ionic liquids (or more generally electrolytes) 

may prove advantageous; however, for IEAP actuators where high electromechanical response if 

of interest, it is recommended to optimize the system by not passing ion concentration saturation 

threshold.  

  Conclusion  

We fabricated and characterized IEAP actuators consisting of Nafion ionomeric membrane 

and EMI-Tf ionic liquid. We found that increasing concentration of ionic liquids in IEAP actuators 

results in enhanced electromechanical response, until the electrode-ionomer interface is saturated 

with the accumulated ions. Beyond the saturation point, ion accumulation is inward, forming a 

secondary layer of ions, and generates undesired strain that partially cancels the strain generated 

by the ion layer at the interface, which is desired for actuation. In short, optimum (not maximum) 

concentration of ionic liquids should be incorporated in IEAP actuators to achieve maximum 

electromechanical response.  
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Abstract 

Ionic polymer metal composites (IPMCs) are the backbone of a wide range of ionic 

devices. IPMC mechanoelectric sensors are advanced nanostructured transducers capable of 

converting mechanical strain into easily detectable electric signal. Such attribute is realized by ion 

mobilization in and through IPMC nanostructure. In this study we have investigated 

electrochemical and morphological characteristics of IPMCs by varying the morphology of their 

metal composite component (conductive network composite (CNC)). We have demonstrated the 

dependence of electrochemical properties on CNC nanostructure as well as mechanoelectrical 

performance of IPMC sensors as a function of CNC morphology. It is shown that the morphology 

of CNC can be used as a means to improve sensitivity of IPMC sensors by 3-4 folds.  

 Introduction 

Ionomers, especially Nafion, have been subject of numerous investigations for their ionic 

properties and applications in ionic-electric devices such as fuel cells [1-4], actuators [5-9], 

batteries [10-13], super capacitors [14] and sensors [15-18]. Among all such applications, ionic 

polymer sensors have received less attention mainly due to apparently inconsistent experimental 
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results [19-22].  Similar to ionic polymer actuators, ionic polymer sensors are consisted of an 

ionomer membrane coated by conductive network composites (CNCs) on both sides, where the 

whole structure (also known as ionic polymer-metal composite (IPMC)) is doped by either aqueous 

or ionic liquid electrolyte. The functionality of ionomeric sensors relies on, supposedly, random 

displacement of ions (and charged ionic clusters if ionic liquids are used) throughout the CNC 

layers when an external mechanical stress is applied. Electric field generated due to the motion of 

charged species is collected by the CNC and is detectable by conventional electronics. Due to the 

presence and displacement of both cations and anions in IPMC, theoretically there should be a 

zero net charge as opposite fields generated by displacement of cations and anions are expected to 

be statistically very close to each other in magnitude and cancel one another. In reality, however, 

there is a non-zero detectable net electric field. This electric field (mechanoelectric signal) exists 

because, due to their volume, charge and interactions with the ionomer, motions of cations and 

anions are different when subjected to stress [17, 23].  

Influence of CNC structure [24-27], ion density [28, 29], electrode properties [30-32] and 

chemical and ionic structure of ionomer membrane [33-35] on performance of IPMC actuators 

have been thoroughly investigated by others and us; similar studies on IPMC sensors, however, 

are not widely reported. To our best recollection, one of the first reports on Nafion-based sensors 

was published by Sadeghipour et al. in 1992 [36] where the concept was introduced. Later in 1995, 

Shahinpoor et al. investigated the response of IPMC sensor against large imposed displacements 

[37]. They published the first review paper of IPMC as biomimetic sensors and actuators in 1998, 

presenting an introduction to IPMC, its applications and the corresponding mathematical modeling 

[22]. In 1999 Ferrara et al. proposed the possibility of applying IPMC sensor as a pressure 

transducer in the human spine [18]. Over the same time period, studies on mathematical modeling 
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of IPMC sensors were also conducted and published [38-41]. All of the abovementioned studies 

considered the IPMC sensors doped with aqueous electrolytes; studies on the ionic liquid-doped 

IPMC sensors, however, are rare. 

In this work, we have investigated the correlations between the mechanoelectric sensing 

performance of IPMC sensors and structural and morphological properties of ionic liquid-doped 

CNC layers. IPMC sensors were fabricated by layer-by-layer (LbL) (Figure 4-1a) deposition of 

CNC layers consisting of gold nanoparticles (AuNPs) and poly(allylamine hydrochloride) (PAH) 

on Nafion membranes. LbL fabrication technique was utilized to manipulate structural properties 

of CNC layers. IPMCs provide environments for storage and mobility of ions. Ion mobility through 

IPMC, due to the porous structure of CNC layers, is higher compared to dense ionomer membrane; 

thus, porosity and structural properties of IPMC is an influential factor in performance and 

attributes of the sensors. This work specifically contributes to the knowledge of ionic and electrical 

properties of ionic liquid-doped nanostructured IPMCs, as well as the potential applications of 

such structures as mechanoelectric sensors. 

 Experimental Section  

4.2.1. Materials 

Nafion membrane of 25 μm thickness (NR 211) was purchased form Ion Power, Inc(DE-

USA). and was cut into pieces of 2.5 cm × 5 cm. Poly(allylamine hydrochloride) (PAH) was 

purchased from Sigma Aldrich (MO-USA) and used to make 10 mM polycationic aqueous solution 

of pH 4; 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) and sodium chloride 

(NaCl) were purchased from Sigma Aldrich (MO-USA) and used as received.  20-ppm aqueous 

dispersion of 3nm (diameter) negatively charged gold nanoparticles (AuNPs) of pH 9 were 

purchased from Purest Colloids, Inc (NJ-USA). and used without further modification. 3M 
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conductive copper tape was purchased from VWR International LLC (PN-USA) and used as 

current collector.  

4.2.2. Methods 

4.2.2.1. IPMC fabrication 

An automated thin-film fabrication robot (StratoSequence 6, NanoStrata, Inc, FL-USA) 

was used to grow AuNPs/PAH CNCs of desired number of bilayers via LbL deposition technique. 

Nafion membrane was mounted on a glass frame and was alternately exposed to cationic (10 mM 

PAH aqueous solution) and anionic (20-ppm aqueous dispersion of AuNPs) species for 5 minutes 

each, with three steps of 1 minute each DI water rinsing after each deposition step. CNCs 

consisting of 2, 4, 6, 8 and 10 bilayers were obtained to investigate thin-film growth on ionomer 

membrane; CNCs consisting of 10, 20, 30 and 40 bilayers were obtained for electrochemical 

studies. Thin-film thicknesses (h, shown in Table 4-1) were measured using a contact profilometer 

as described in our earlier work [24]. 

Moreover, to further study the effect of ionic strength of polyelectrolyte on CNC 

morphology, 200 mM NaCl was added to PAH solution to manipulate its ionic strength and 

consequently its polymer chains configuration. 20 bilayer CNCs with and without NaCl were 

fabricated to investigate the influence of morphology on the sensing performance. The samples 

were labeled (AuNP/PAH-NaCl)20 and (AuNP/PAH)20, respectively, where the subscript 20 

identifies the number of deposited bilayers constituting the CNCs. Presented in Figure 4-1b is an 

(AuNP/PAH)20 IPMC on a glass frame. Figure 4-1c, background, shows a SEM micrograph of 

the CNC coating and a schematic of the device is presented in the foreground.  CNC coated 

ionomer membranes were then soaked in EMI-Tf ionic liquid at 80 °C to intake ~30 wt% ionic 
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liquids. Considering the high sensitivity of Nafion and EMI-Tf ionic liquid to humidity [42, 43], 

samples were then placed under vacuum (gauge pressure of ~-100 kPa) at 115 °C for three days to 

dehydrate, and kept in desiccator until used.  

 

Figure 4-1: a) Schematic representation of layer-by-layer direct self-assembly of AuNP and PAH; b) 

CNC layer formed on Nafion ionomer, the membrane is mounted on a glass frame; c) foreground: 

schematic representation of IPMC and sensor structure, background: SEM micrograph of AuNP/PAH 

CNC nanostructure.  

4.2.2.2. Optical characterization 

Optical spectrum was acquired on CNCs to characterize the LbL self-assembled thin-films, 

using a PerkinElmer Lambda-25 UV/VIS Spectrometer. 

4.2.2.3. Electrochemical characterization 

Samples doped with ionic liquid were characterized for their electrochemical properties 

using a VersaSTAT-4 (Princeton Applied Research, IL-USA) potentiostat on 2-electrode mode. 

Impedance spectroscopy studies were carried at frequencies between 1.0E5 Hz and 1.0E−1 Hz, 
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and a potential difference (ΔV) of 10 mV. Electrical conductivity (σ) of the doped membranes was 

calculated from Equation 4-1,   

𝜎 =
ℎ

𝑅𝐴
                                                       (4-4-1) 

where h and A are representing thickness and area of the membrane, respectively; and R is 

the resistance deduced from impedance spectroscopy measurements.  

4.2.2.4. Mechanoelectrical characterization 

Stress induced dynamic electric response was measured and recorded to study 

mechanoelectrical properties of the samples. Samples were cut into pieces of approximately 14 

mm × 17 mm. Copper tape was used as electrodes and the whole system was covered by electrical 

tape to form an isolated sample. The samples were placed flat and tested on an in-house made 

setup at frequency of 1Hz. A 12 kPa stress was generated and distributed uniformly across the 

sensor by reciprocating motion of a mass manipulated by a computer controlled stepper motor. A 

schematic representation of the setup is presented in Figure 4-2. Two ends of the sample were 

clamped and connected to an oscilloscope to monitor the generated electric signal, which was 

recorded via a LabVIEW interface over an extended period of time. 
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Figure 4-2: A schematic representation of the setup and operations for the mechanoelectrical 

characterization (dimensions are not to scale). The IPMC sensor piece was covered by electrical tape, 

with copper tape used as electrodes to connect to an oscilloscope to monitor the generated electric signal. 

A 12 kPa stress was distributed evenly by a mechanical arm whose frequency was controlled at 1 Hz by a 

step motor. 

 Results and Discussion  

4.3.1. Morphological characterization 

Growth kinetics of CNC nanostructures, consisting of AuNP/PAH with and without 

addition of NaCl to the PAH solution, was investigated. Presented in Figure 4-3a is the plasmonic 

absorption band of 3 nm diameter AuNPs, centered at 514 nm. When paired with PAH to form 

LbL nanostructures, the absorbance peak shifted toward longer wavelengths (Figure 4-3b); which 

is an indication of the enhanced electromagnetic coupling between neighboring nanoparticles [44], 

and it is more evident in nanostructures of larger thicknesses because a more closely packed 

structure is formed. Increase in the absorbance intensity implies an increase in the thickness of the 

CNC film. The correlations of ionic strength of polyelectrolyte and film thickness in LbL self-

assembly are discussed by several researchers including [45-48].  
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Intensity of the absorbance peaks of the AuNP/PAH bilayers showed a direct and linear 

dependence on the thickness of the nanostructures (Figure 4-3c). The linear correlation between 

thickness and peak absorbance amplitude is an indication of consecutive surface-charge buildup 

of AuNPs in the nanostructure[49]. Addition of NaCl to PAH resulted in formation of thicker and 

denser nanostructures; thus, the increase in absorbance intensity for CNCs consisting of larger 

number of bilayers is significantly more evident compared to that of samples without NaCl (Figure 

4-3c); this is mainly due to an increase in ionic strength of the polycation which results in 

accumulation of more negatively charged AuNPs and formation of thicker and denser bilayers.  

 

Figure 4-3: a) UV-Vis absorbance spectra of AuNP aqueous solution (20 ppm); b) UV-Vis absorbance 

spectra of 2, 4, 6, 8, and 10-bilayer AuNP/PAH and AuNP/PAH-NaCl nanostructures; c) plot of the 

absorbance peaks of CNCs consisting of different number of bilayers and morphology 
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4.3.2. Electrochemical analysis 

To study thickness dependence of the frequency response in IPMC sensors and the 

corresponding electrical efficiency, the electrical impedances of sensors with CNC layers 

consisting of different number (0, 10, 20, 30 and 40) of bilayers were investigated as a function of 

frequency. Applied potential of 10 mV was selected so that the electric impedance can be 

characterized over a broad frequency range with required accuracy. Typically, the electrochemical 

responses of such ionic devices are nonlinear functions of the CNC morphology and applied 

voltage, thus different CNC structures (e.g. with or without NaCl) and changes in the applied 

voltage will affect the numerical values of the electrical impedance results; for example, the 

capacitance will increase with increase of applied voltage. However, these nonlinear effects will 

not change the trends and conclusions drawn from the experimental results [50]. 

Presented in Figure 4-4a are the curves of Nyquist plot for the IPMC sensors at higher 

frequencies, where the electrochemical systems exhibited near-pure resistance behavior. Solution 

resistance (R) is deduced by reading the Zre value at the intersection of extended curves and the x-

axis. As discussed in our previous works [10, 28], solution resistance depends on the ionic 

conductivity of the entire system including the transportation of ions between anode and cathode. 

Thicker CNC layers result in smaller solution resistances, indicating the presence of an ion-rich 

environment in thicker CNC nanostructures. Ionic conductivity of the IPMC sensors is calculated 

from Equation 4-1 and reported in Table 4-1 along with solution resistance and other 

characteristics of the IPMC sensors.  
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Figure 4-4: Electrochemical studies of IPMC sensors consisting of different thickness CNCs (without 

NaCl) a) Nyquist plot of impedance magnitude of IPMC sensors. Solution resistance values are deduced 

from the intersection of plots with the axis; b) Impedance magnitude as a function of frequency; c) phase 

angle as a function of frequency; d) plots of  1/(𝑅𝑠 − 𝑅) versus 𝜔, and their corresponding fitting lines 

based on the equivalent circuit (inset). 

Table 4-1: Solution resistance, ionic conductivity and electric double layer capacitance of IPMC sensors 

with various thicknesses of CNC layers. 

Bilayers 0 10 20 30 40 

h(μm) 25.000 25.046 25.084 25.128 25.162 

A(cm2) 1 1 1 1 1 
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R(Ω) 45.0 38.4 29.4 27.7 23.8 

σ(S.cm-1) 5.56E-5 6.52E-5 8.53E-5 9.07E-5 10.58E-5 

C(F.cm-1) 3.64E-7 3.62E-7 9.37E-7 2.32E-6 2.67E-6 

 

Magnitude of electrical impedance |Z| and phase angle (φ) for IPMC sensors consisting of 

different thickness CNCs as a function of frequency (f) are presented in Figures 4-4(b-c). As 

evident from Figure 4-4a, impedance |Z| is inversely proportional to the thickness of CNC layer. 

This behavior is especially more evident at lower frequencies (0.1-100 Hz). In general, for an 

IPMC sensor to response to an external mechanical stimulus and deliver an electric signal, a large 

capacitance is preferred. At the same low frequency range, phase angle, which is a function of 

frequency, exhibited a direct correlation to the thickness of the CNC nanostructure (Figure 4-4c), 

suggesting a stronger capacitance-like behavior for samples with thicker CNC layer; this 

characteristic is hindered at higher frequencies. To achieve high electrical efficiency in IPMC 

sensors, larger phase angles are preferred; which, can be realized by increasing the thickness of 

the CNC layers in sensors for low frequency (<100 Hz) applications.  

An equivalent circuit, as shown in Figure 4-4d-inset, was introduced to study the 

electrochemical behavior of IPMC sensors at lower frequency boundaries, between 0.1 and 100 

Hz, as a function of thickness of the CNC layer. Briefly, an electric double layer (EDL) capacitor 

(C) is formed at the interface between the outer electrodes and electrolyte, with a Warburg 

impedance element (W) connected in parallel to represent diffusion controlled charge transfer 

process in pseudo-capacitors. Both elements are then connected with a solution resistor (R) in 

series to represent the bulk resistance between two electrodes. The net real resistance of the system 
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(Rs) can be expressed as the sum of the solution resistance (R) and real part of the impedance (Zre) 

as 𝑅𝑠 = 𝑅 +  
2𝑌0𝜔𝑛cos (𝑛𝜋/2)

𝑌0
2𝜔2𝑛+𝜔2𝐶2+2𝜔𝑛+1𝐶𝑌0.sin (𝑛𝜋/2)

, which can be reorganized to 
1

𝑅𝑠−𝑅
=

𝑌0𝜔𝑛

2cos (𝑛𝜋/2)
+

𝐶2𝜔2−𝑛 

2𝑌0.cos (𝑛𝜋/2)
+ 𝜔𝐶. 𝑡𝑎𝑛(

𝑛𝜋

2
). Take 𝑛 = 0.5 for a Warburg element and rewrite the equation 

to 
1

𝑅𝑠−𝑅
=

√2

2

𝐶2𝜔1.5

𝑌0
+ 𝐶𝜔 +

√2

2
𝑌0𝜔0.5. More details of this model is presented in our previous study 

[28]. Experimental data (symbol) fitted with computational data (solid line) are shown in Figure 

4-4d, confirming viability of the presented equivalent circuit. The computational data of the EDL 

capacitor (represented as C in the circuit) at each sample was deduced and is listed in Table 4-1. 

A general upward trend was observed with increasing thickness of CNC layer, confirming the 

hypothesis that a thicker CNC layer has a larger ion storage volume and can withhold more mobile 

ions at the electrodes [24].  

4.3.3.  Mechanoelectrical sensing performance 

When mechanically deformed, IPMC sensors generate a weak yet detectable electric 

potential, which is the core of the “sensing” concept of such systems. Mechanism and theory of 

such mechanoelectrical behavior of systems doped with aqueous electrolytes have been studied 

thoroughly and reported [16, 17, 22, 38]. It is hypothesized that prior to application of mechanical 

stress, and the consequent deformation, the cations and anions are distributed uniformly over the 

inner surface of ionic cluster phase of ionomer. This steady state of zero net charge, however, is 

disturbed and distorted by the imposed deformation. Consequently, ions are displaced producing 

an effective dipole in each cluster [5, 25, 38, 50]; as a result, an electric field is generated that is 

analyzed as the dynamic sensing response. In case of Nafion, the ionomer studied in this work, 

anions are restrained and only cations are mobilized. When impacted, while anions are fixed, 

cations move away from the impacted side and toward the other side which is stretched due to the 



www.manaraa.com

76 

 

 

 

impact. This results in polarization of electric charge across the sensor, rendering the impacted 

side as the anode and the stretched side as the cathode [18, 51-53]. During the experimental testing, 

the positive (red) terminal of the voltmeter was connected to the cathode to read the sensed signal 

as positive. Three sets of samples (bare Nafion (AuNP/PAH)0, (AuNP/PAH)20 and (AuNP/PAH-

NaCl)20), were studied for the mechanoelectrical characterization. Sample selection was in such 

way that the role of CNC and its morphology can be examined. Samples were subjected to cyclic 

mechanical stress of 12 kPa at 1 Hz for over 500 cycles, until sensing signals were stable in 

amplitude. Presented in Figure 4-5 is the mechanoelectrical response of the three sets of samples; 

insets shown zoomed in signals in the beginning and the end of the testing period. Initially, signals 

generated by the samples with CNC coating were 5 to 11 folds stronger than that of the uncoated 

samples. Amplitude of all signals declined overtime and reached a stable state where the signals 

from coated samples were approximately 4 folds stronger than the uncoated sample. Samples with 

and without NaCl in the CNC structure reached approximately the same stable plateau. The 

dynamic response was observed to be highly repeatable with a bandwidth of 1 Hz for all three 

samples. Each peak rises almost instantaneously when the pressure is applied, and recovers when 

the pressure is withdrawn. To confirm reproducibility and statistical significance of the collected 

data, three runs were conducted on each of the three sets of samples, and the standard deviation of 

each data set was calculated. For the three sets of samples ((AuNP/PAH)0, (AuNP/PAH)20 and 

(AuNP/PAH-NaCl)20), the standard deviation range (minimum/maximum) was found to be (6.7E-

6/1.7E-3), (0/4.7E-3) and (0/7.5E-3), respectively.  
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Figure 4-5: Mechanoelectric sensing in repose to cyclic 12 kPa stress at 1 Hz. Insets show the zoomed in 

plots at the first and last 10 seconds of the experiment. 

Experimental data indicates that there is a strong correlation between the morphology of 

CNC layers and mechanoelectrical response in IPMC sensors. A higher concentration of AuNPs 

in CNC results in higher porosity that facilitates higher ion mobility under mechanical impact. 

This enhanced ion mobility, however, is declined to a common and stable plateau for IPMC sensors 

regardless of the nanostructure of the CNC. This observation may be due to loss of elasticity, or 

creep of the IPMC at microscale. For samples without CNC the signal amplitude is considerably 

weaker. Overall, the CNC layer results in at least 3-4 folds’ increase in the strength of the sensing 

response; no dependence was observed between the structure of IPMC and the response time of 

the sensors.  

 Conclusions  

We reported the study of correlations between structural properties of IPMC sensors and 

their electrochemical and mechanoelectrical properties and performance. It was demonstrated that 
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changes in nanostructure and morphology of CNC layers could be utilized as a means to control 

and enhance the sensitivity of mechanoelectric IPMC sensors by at least 3 to 4 folds. Initially 

optimized samples exhibited 11 folds’ increase in their sensitivity to mechanical strain; the overall 

amplitude of the electrical signal, however, declined over hundreds of cycles, most probably due 

to creep formation and mechanical failure of the IPMC. Better casing and more robust IPMCs are 

expected to overcome this issue. It is foreseen that future work would involve exploration of 

effective techniques to reduce the stabilization time of such sensor systems. 
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Abstract  

The most rational approach to fabricate soft robotics is the implementation of soft 

actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, 

based on their design. This study presents the use of conjugated polymers, Poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of 

the ionic electroactive polymer actuators and manipulate ion motion through means of structural 

design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic 

systems and have potential applications in bio-robotics. Electrochemical studies reveal that the 

mechanism of actuation is mainly associated with the charging of electric double layer (EDL) 

capacitors by ion accumulation and the PEDOT:PSS layer’s expansion by ion interchange and 

penetration. Dependence of actuator deformation on structural design is studied experimentally 

and conclusions are verified by analytical and finite element method modeling. The results suggest 

that the ion-material interactions are considerably dominated by the design of the drop-cast 

PEDOT:PSS on Nafion. 

                                                 
1 This is an open access journal, and the publisher “Multidisciplinary Digital Publishing Institute “, allows the 

authors to re-use the material without obtaining permission. 
2 Primary researchers and authors. Graduate student, graduate student, graduate student, graduate student, and 

academic advisor, respectively.  
3 Department of Mechanical Engineering, Iowa State University. 
4 Department of Aerospace Engineering, Iowa State University.  
5 Author of correspondence.  



www.manaraa.com

84 

 

 

 

 Introduction  

The field of robotics is currently dominated by “hard robots” consisting of hard materials, 

mainly metallic or composite structures, paired with either (or both) ceramic actuators or electric 

motors as drive trains. Although hard robots sometimes have biomimetic design and limb-like 

structures similar to those in animals (e.g., “Big Dog” constructed by Boston Robotics [1]), hard 

robots often use wheels and rotary motors for motion, which distance them from biomimetic design 

and deters their integration with biomimetic systems. Soft actuators, on the other hand, have 

enabled soft robotics that can move and be manipulated, exhibiting biomimetic physical and 

mechanical attributes similar to those of Mollusca [2-6]. The ultimate advantages of soft actuators 

are that (1) they can easily conform to curvilinear structures, like biological muscles; and (2) since 

actuation is an intrinsic property of the actuator, micro-scale systems are practical to design and 

fabricate. 

Electroactive polymer actuators, and in particular ionic electroactive polymer (IEAP) 

actuators, have attracted enormous interest and attention from the soft-robotic community and have 

been subject to extensive studies over the past several years [7-13]. Depending on the design, IEAP 

actuators can exhibit either linear or circular deformation. Linear IEAP actuators have a minuscule 

electromechanical response, which is not adequate for locomotion; circular deformation, however, 

is substantial. IEAP actuators consist of an ionomeric membrane at the core, covered with 

conductive network composite (CNC) layers and metal electrodes on each side to enhance ionic 

mobility and electric conductivity. IEAP actuators are doped with electrolytes, typically ionic 

liquids, to provide the ion-rich environment required for actuation. IEAP actuators’ performance 

and attributes depend on many factors, including the thickness and chemical structure of the 

ionomeric membrane [14]; the thickness, density, porosity, and electric conductivity of CNC layers 
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[15-19]; the thickness and electric conductivity of metal electrodes [20]; and the type, mobility, 

and prevalence of mobile ions [14, 17, 21-23]. IEAP actuators exhibit two physical deformations: 

cationic and anionic. Under an applied electric field cations and anions compete to reach the 

electrodes of opposite charge. There is often (depending on chemical composition of the 

electrolyte [24], CNC, and ionomeric membrane) a time lag between the accumulation of different 

ions at the electrodes. Therefore, in our case the actuator initially bends toward anode, which is 

due to accumulation of cations and called cationic deformation, then follows a bending toward 

cathode, which is due to accumulation of anions and called anionic deformation. This behavior is 

previously explored and discussed in detail [15-19]. 

Circular-bending soft actuators can be used to mimic a Venus flytrap [25], flap wings [26, 

27], create artificial muscles [12, 28], and propel fish robots [29, 30]. But, circular actuation can 

also be considered a disadvantage of IEAP actuators concerning soft bio-robotic applications, as 

it is distinctly different from most biological systems. Although vertebrates and invertebrates have 

many muscles with circular or sinusoidal motion (e.g., tongue, abdominal muscles, etc.), they are 

not used for locomotion. Locomotor muscles are usually integrated with skeleton or exoskeleton 

structures to form limbs. Some robotics applications like microgrippers [8, 31] and miniaturized 

five fingered robots [7] would have worked more efficiently with angular (limb-like) rather than 

circular motion. To achieve angular motion, some researchers controlled individual segments of 

the IEAP actuators, moving them in different directions [32, 33]. A snake-like swimming robot is 

one example of this technique [34]. 

In this work, IEAP actuators with angular deformation, mimicking the limb-like motion in 

biological systems, are presented and studied. The limb-like motion is achieved intrinsically and 

without utilization of skeleton-like structures. Patterns of a conjugated polymer were deposited on 
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the ionomeric membrane to introduce regions with selective ion permeability to manipulate 

deformation. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) was used 

in fabrication of patterns because of its high conductivity and facile processing [35-43]. 

Dependence of deformation on the patterns of conjugated polymers is studied as well as 

morphological asymmetry in patterns and their influence on the cationic and anionic deformations. 

Electromechanical and electrochemical studies are accompanied and verified by analytical and 

finite element method (FEM) modeling. This study is expected to provide a cornerstone for 

utilization of advanced manufacturing techniques such as 3D printing in fabrication of soft 

actuators [44, 45].  

 Experimental 

5.2.1. Materials 

Commercially available Nafion membrane, 25 µm thick, (Ion Power, Inc., New castle, DE, 

USA) was used as the ionomeric membrane; 1-ethyl-3-methylimidazolium 

trifluoromethanesulfonate (EMI-Tf, molecular formula: C7H11F3N2O3S) ionic liquid (Sigma 

Aldrich, St. Louis, MO, USA) was used as received; poly(3,4-ethylenedioxythiophene)-

poly(styrenesulfonate) (PEDOT:PSS) (3.0%–4.0% in H2O, high-conductivity grade) (Sigma 

Aldrich, St. Louis, MO, USA) was diluted by mixing with de-ionized (DI) water at 1:1 ratio and 

was used for fabrication of conductive polymer patterns. Gold leaf, 50 nm thick, (24K, transfer, 

LA Gold Leaf, Azusa, CA, USA) was used as the outer electrodes. 

5.2.2. Sample Fabrication  

Nafion, in its acidic form, was first cut and soaked in EMI-Tf at 80 °C for 30 min to intake 

~25 wt % of ionic liquid. Ionic liquid content was calculated as the weight percentage (wt %) of 

the dry weight of the membrane using Equation (5-1): 
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𝑊𝑒 (%) =
𝑊𝑓 − 𝑊𝑑

𝑊𝑓
 × 100%                                             (5-5-1)  

where We (%) is the weight percent of the electrolyte; and Wd and Wf are the weights of dry 

and doped Nafion, respectively [23]. The doped Nafion membrane was then placed between two 

sheets of filter paper overnight to flatten. Diluted PEDOT:PSS aqueous solution was drop-cast on 

the Nafion membrane over a vinyl mask at the concentration rate of 0.56 μL/mm2. Schematic 

representations of each pattern are provided in Figure 5-1. The coated and uncoated strips are equal 

in width and 3 mm each. The drop-cast patterns were dried slowly on a hot plate at 40 °C for 48 h 

to allow for complete solvent (DI water) evaporation, and prevent anisotropic shrinkage of 

samples. Employing this method, flat and smooth samples were obtained and no anisotropic 

shrinkage was observed. The coated samples were then dried under vacuum at 60 mmHg at room 

temperature for 24 h for further dehydration. Gold leaf electrodes were then hot-pressed at 95 °C 

under 1000 lbf for 40 s on both sides of the membrane to form an IEAP actuator. 

 

Figure 5-1 : Angled (top row) and side (bottom row) views of patterned samples; (a) 1S, (b) 2SS, and (c) 

2SA. Gold leaf electrodes are not shown in the sketch to give a better view of the patterns. Not to scale. 

. 
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5.2.3. Sample nomenclature 

Sample nomenclature is shown in Table 5-1. 

Table 5-1 The abbreviation and its definition of each sample used in this work. 

Samples for Electromechanical Characterizations 

Name Definition 

1S Pattern deposited on one side, Figure 5-1a 

2SS Symmetric patterns on both sides, Figure 5-1b 

2SA Asymmetric patterns on both sides, Figure 5-1c 

2SA2 2SA sample with 2 strip-patterned side attached to anode 

2SA3 2SA sample with 3 strip-patterned side attached to anode 

Samples for Electrochemical Characterizations 

Name Definition 

BNafion Bare Nafion doped with ionic liquid 

Nafion/1s-PEDOT:PSS PEDOT:PSS drop-cast on one side (full coverage, no pattern) 

Nafion/2s-PEDOT:PSS 
PEDOT:PSS drop-cast on both sides (full coverage, no 

pattern) 

Sample for Morphological Characterizations 

Name Definition 

Nafion/1s-

PEDOT:PSS/Au 

PEDOT:PSS drop-cast on one side (full coverage, no 

pattern), with gold leaf electrodes hot-pressed on both sides 

 

5.2.4. Electrochemical characterizations 

Impedance spectroscopy, current flow, and cyclic voltammetry studies were conducted on 

a VersaSTAT-4 potentiostat (Princeton Applied Research, Oak Ridge, TN, USA) in two-electrode 

mode. The impedance spectroscopy studies were carried out at frequencies between 1.0 × 105 Hz and 

1.0 × 10−1 Hz, and a potential difference (ΔV) of 10 mV. Current flow was studied as a function of 

±4 V step function, each over a 600 s interval. Cyclic voltammetry was carried out in ±4 V potential 

window at a scan rate of 50 mV/s. 

5.2.5. Electromechanical Characterizations 

Actuators of 1 × 15 mm2 dimension were cut perpendicularly to the longitudinal direction 

of the PEDOT:PSS strips. Electromechanical responses of actuators as a function of a 4 V step 
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function were monitored and recorded using a charge-coupled device (CCD) video camera, 

mounted to an in-house-constructed microprobe station, at 30 frames per second. 

5.2.6. Morphological and mechanical characterizations 

Surface analysis was conducted using scanning electron microscopy (SEM) (Jeol. JCM-

6000 NeoScope, Peabody, MA, USA) to characterize morphology of the specimens, including film 

thickness and layer adhesion. The SEM image of the cross-section of Nafion/1s-PEDOT:PSS/Au 

sample is shown in Figure 5-2, indicating well interlayer adhesion between Nafion membrane and 

PEDOT:PSS layer after hot-press, with no observable separation in between.  

 

Figure 5-2: SEM image of the cross-section of specimen Nafion/1s-PEDOT:PSS/Au, indicating well 

interlayer adhesion between layers. 

The elastic modulus of each constituent layer of IEAP actuator was measured/calculated 

using a dynamic mechanical analyzer (DMA-1, Mettler Toledo, Columbus, OH, USA), loaded 

with tension clamps and operated in static modes. More information is included in Section 1, 

Supporting Information. 
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5.2.7. Finite element modeling 

ABAQUS finite element software (ABAQUS/CAE 2016, Dassault Systèmes Simulia 

Corp., Johnston, RI, USA) was used to model the electromechanical responses of IEAP actuators 

and study the effect of various patterns on the actuation performance, and verify the experimental 

results. Details of the simulation procedures are presented in Section 2 of the Supporting 

Information. 

 Results  

5.3.1.  Cyclic Voltammetry 

Cyclic voltammograms of bare and coated specimens obtained in a potential range of ±4 

V at a sweep rate of 50 mV/s are shown in Figure 5-3. Both voltammograms of specimens BNafion 

and Nafion/2s-PEDOT:PSS show reversible curves, revealing a reversible redox reaction at the 

electrode. When compared with BNafion, two additional significant current peaks are observed at 

±1.5 V for Nafion/2s-PEDOT:PSS which are characteristic to PEDOT:PSS [38]. Additionally, 

another pair of current peaks are observed at ±0.8 V for both bare and coated Nafion, which 

correspond to ion drift across the Nafion membrane [46]. 
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Figure 5-3: Cyclic voltammograms of different specimens measured at 50 mV/s. 
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5.3.2. Equivalent circuit modeling 

Electric double layer (EDL) formation in IEAP actuators is a known phenomenon well-

studied by others and us as well [17-19, 22, 38, 47]. To investigate how the presence of 

PEDOT:PSS layers affect the formation of the EDL at the electrode, electrical impedance was 

studied as a function of frequency. Electrochemical studies were conducted at 10 mV and at a 

varying frequency to allow characterization over a broader frequency range. The electrochemical 

behavior of the system can be analyzed by fitting the electrical impedance with an equivalent 

electric circuit; as authors have previously shown for similar actuators with metallic colloid 

coatings [22, 23, 48]. The EDL capacitors in series with the resistance of bulk Nafion layer Rb can 

be used to model the electrochemical behavior of such systems. The continuous contribution of a 

diffuse layer makes the pseudo-EDL capacitor very different from an ideal capacitor. Therefore, a 

constant phase element (CPE) was introduced in parallel with the EDL capacitor, as shown in 

Figure 5-4. The impedance of the introduced CPE, 𝑊𝐶𝑃𝐸, is defined as: 

𝑊𝐶𝑃𝐸 =
1

𝑌0

(𝑗𝜔)−𝑛                                             (5-2)  

where ω is angular frequency, and the property of a CPE is defined by two values, 𝑌0 and 𝑛. 𝑛 is 

a unitless exponent taking values between 0 and 1. As 𝑛 = 0, CPE is identical to a resistor with 

𝑌0 = 1 𝑅⁄ , and when 𝑛 = 1,  CPE is identical to a capacitor with 𝑌0 = 𝐶.  

 

Figure 5-4: Equivalent circuit with a constant phase element 
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Considering the symmetric structure of BNafion and Nafion/2s-PEDOT:PSS, the impedance of 

two EDL capacitors and CPEs were set equally, that is, 𝐶𝑑𝑙1 =  𝐶𝑑𝑙2, and 𝑊𝐶𝑃𝐸1 = 𝑊𝐶𝑃𝐸2. Figure 

5-5Error! Reference source not found.a–f present the experimental data and the fittings (solid 

curves) of the electric impedance magnitudes and phase angles of BNafion, Nafion/1s-

PEDOT:PSS, and Nafion/2s-PEDOT:PSS. The model and the impedance spectrum in the entire 

frequency range are in good agreement. Table 5-2 summarizes the fitting parameters for the three 

actuators. The bulk membrane resistance, Rb, is found to increase from 89.9 Ω (BNafion) to 171.7 

Ω (Nafion/2s-PEDOT:PSS), primarily due to the indirect contact between the ionomer and the 

external electrode [9]. The PEDOT:PSS layers on both sides of Nafion/2s-PEDOT:PSS cause a 

significant drop in the capacitance of the EDL capacitor Cdl compared to BNafion (from 3.24 to 

0.12 µF).  

In samples with the PEDOT:PSS layer casted only on one side of the Nafion membrane, an 

asymmetric charging behavior is induced by its morphological asymmetry. As presented in Error! 

Reference source not found., the capacitance Cdl improved on one side, while it dropped on the 

other side. The largest (12.78 µF) and smallest (3.52 × 10−3 µF) capacitances of Cdl both occurred 

in the same specimen, but at different electrodes, indicating a highly imbalanced storage of ions at 

the external electrodes. The higher capability of the ions storage could happen in either the 

uncoated or PEDOT:PSS coated side, which will be discussed in the next sections with other 

experimental results. 

. 
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Figure 5-5: Impedance magnitudes of (a) BNafion, (b) Nafion/1s-PEDOT:PSS, and (c) Nafion/2s-

PEDOT:PSS; and phase of (d) BNafion, (e) Nafion/1s-PEDOT:PSS, and (f) Nafion/2s-PEDOT:PSS fitted 

by equivalent circuit with constant phase element shown in Figure 5-4. 

 

 

 

 

Table 5-2: Fitting parameters for different specimens. 

Circuit Element BNafion 
Nafion/ 

1s-PEDOT:PSS 

Nafion/ 

2s-PEDOT:PSS 

𝑅𝑏(Ω) 89.9 118.9 171.7 

𝐶𝑃𝐸1 
𝑌0 (Ω−1 · 𝑐𝑚−2 · 𝑠𝑛) 3.90×10-5 1.95×10-4 3.12×10-4 

𝑛  0.29 0.18 0.11 

𝐶𝑃𝐸2 
𝑌0 (Ω−1 · 𝑐𝑚−2 · 𝑠𝑛) 3.90×10-5 3.50×10-4 3.12×10-4 

𝑛  0.29 0.21 0.11 

𝐶𝑑𝑙1 (µ𝐹) 3.24 12.78 0.12 

𝐶𝑑𝑙2 (µ𝐹) 3.24 3.52×10-3 0.12 

 

5.3.3. Charging and discharging 

To further investigate how the morphological asymmetry affects the charging/discharging 

behavior under a step voltage, current flow corresponding to a 4 V potential difference between 
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the external electrodes was measured and recorded as a function of time (Figure 5-6a). Figure 5-

6b presents the corresponding charge density stored in the specimen as a function of time. Each 

step function was set to 600 s; a much larger time range for the strain generated in these actuators 

that have already reached saturation [47]. The side with the casted PEDOT:PSS layer in Nafion/1s-

PEDOT:PSS is connected to the working electrode, which experiences a higher potential in the 

charging process and a lower potential in the following discharging process. According to the 

cyclic voltammetry results, an electrochemical reaction occurs in the PEDOT:PSS layer when it is 

under a ±4 V voltage. The larger charging/discharging current in Nafion/2s-PEDOT:PSS 

(compared with BNafion) is due to the inserted/ejected electrons and the corresponding ion 

interchange. The charge density (area under the curve) difference between charging and 

discharging of symmetric samples (BNafion and Nafion/2s-PEDOT:PSS) is attributed to the 

random distribution of ions when charging is initiated compare to when discharging is initiated 

where, hypothetically, all ions are at the opposite electrode. While discharging, ions are traveling 

a longer path-length to reach the matching electrode, and this results in a larger current density. 

Additionally, a significantly larger magnitude of displaced charge (area under the curve) was 

observed in Nafion/1s-PEDOT:PSS. The highest charge density was observed when the 

PEDOT:PSS layer was connected to the higher potential in the charging process (Figure 5-6b, red 

curve, 0–600 s). This was followed by a less significant charge density during the discharging 

process (same plot, 600–1200 s). This phenomenon can be partially explained by the promoted 

ions’ drift, due to the better contact between the ionomer and the external electrode on the uncoated 

side. When at the higher potential, electrons will be ejected from PEDOT and positive charge 

carriers will be introduced to make the material electrically conducting, while at the lower 

potential, PEDOT will be reduced and partially loses its conductivity [49]. This also can explain 
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the slightly decreased charge density of Nafion/1s-PEDOT:PSS during the discharging process. 

Overall Nafion/1s-PEDOT:PSS reveals the highest charge storage capacity. 
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Figure 5-6 : (a) Charging/discharging currents and (b) charge density versus time for different specimens 

under one cycle of a 4 V square wave. 

5.3.4. Electromechanical response 

The electromechanical response of IEAP actuators with different PEDOT:PSS patterns was 

studied. Actuator 1S was first tested under a 4 V step function with the cathode connected to the 

PEDOT:PSS coated side. The cationic response was homogenous and circular toward the uncoated 

side. This behavior is similar to that of the actuators consisting of uniform CNC layers as reported 

previously [17-19, 22, 47]. However, as time progressed, this uniform actuation was canceled by 

the dominating anionic strain, which consists of a sharp, angular bending. Thus, the actuator 

exhibited a limb-like deformation. The schematic representation of the pattern and the images of 

the experimental results are shown in Figure5-7a.  

To further explore how different patterns affect the actuation performance, a 4 V step 

function was applied to the other two actuators, 2SS and 2SA; experimental results are presented 

in Figure5-7b–d. The electromechanical response of the asymmetric 2SA actuator was studied 

under different polarities, 2SA2, and 2SA3. The 2SS actuator exhibited a rectangular, limb-like, 

deformation in both cationic and anionic deformations (Figure 5-7b), while 2SA actuators 
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exhibited a more complex behavior, indicating a dependency on the electrode polarity (Figure 5-

7c,d). In anionic motion, 2SA2 deformed into rectangle-like shape when actuator 2SA3 deformed 

into a triangle-like shape. Meanwhile, both cases have noticeable anionic deformation (strain) but 

almost negligible cationic deformation. 

 

Figure 5-7 : Schematic representation and experimental actuation performance for (a) 1S, (b) 2SS,  

(c) 2SA2, and (d) 2SA3. Left picture is the cationic response and right picture is the anionic response. 

 Discussion and simulation 

5.4.1. Discussion 

Our experimental results suggest that the PEDOT:PSS layers as the CNC considerably 

affect the actuation behavior.  

First, impedance data and the corresponding equivalent circuit modeling indicate that in 

Nafion/1s-PEDOT:PSS, ions are more likely to accumulate and act at the interface of one 
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electrode, while depleted on the interface of the other electrode. However, when the PEDOT:PSS 

layer is casted on both sides of Nafion, a completely different phenomenon occurs and fewer ions 

move to charge the EDL capacitors. Consequently, fewer ions will accumulate at the outer 

electrodes; which in turn hinders mechanical deformation of the actuator. 

Secondly, Nafion/1s-PEDOT:PSS exhibits the highest charge density under a 4 V square 

function. Since the main cause of the actuation is the accumulation and depletion of charged ions 

at the interfaces of the electrodes, the existence of PEDOT:PSS layer casted on only one side of 

Nafion would, most likely, enhance the actuation.  

Additionally, electromechanical responses suggest that the actuation performance varies 

significantly with the existence of the PEDOT:PSS layer. Experimental results for actuators 1S, 

2SA2, and 2SA3 all reveal an enhancement in the strain generation when the PEDOT:PSS layer 

only exists on the convex side, and an inhibition when it only exists on the concave side. Before 

the application of an electric potential, EMI-Tf ions are only distributed in the Nafion membrane, 

and presumably none in the PEDOT:PSS layer. Cyclic voltammetry results reveal that an 

electrochemical redox occurs in the PEDOT:PSS layer at ±1.5 V. Therefore, this enhancement-

on-convex and inhibition-on-concave phenomenon may be caused by: (i) the expansion of the 

PEDOT:PSS layer due to the ion interchange and penetration to maintain charge neutrality; and 

(ii) ion accumulation and/or depletion at the electrodes. Experimental results for actuator 2SS, 

however, exhibit a completely reversed trend, that no matter whether in the convex or concave 

side, the PEDOT:PSS layer always hinders the actuation. That is, the existence of the PEDOT:PSS 

layer does not contribute considerably to expansion. Although, charging results reveal a relatively 

larger charging density in Nafion/2s-PEDOT:PSS than in BNafion, due to the electrochemical 
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redox of PEDOT layers, this phenomenon could be explained by fewer ions moving to charge the 

EDL capacitors at the interfaces of electrodes.  

Considering the structures of the actuators investigated in this study, segments of the 

actuators can be categorized under three possible structures: (1) uncoated membrane (BNafion); 

(2) single-side coated membrane (Nafion/1s-PEDOT:PSS); and (3) double-side coated membrane 

(Nafion/2s-PEDOT:PSS). Following scrutinizing the electromechanical response of actuators on 

the segment scale, it is concluded that: (1) for asymmetric segments, volume expansion occurs in 

the PEDOT:PSS layer due to ion interchange and ion accumulation/depletion at the interfaces of 

external electrodes; (2) the PEDOT:PSS layer does not contract; and (3) for symmetric segments, 

volume expansion occurs, but fewer ions move toward the electrodes than that of the uncoated 

segment. Therefore, deformation is enhanced on the uncoated segments and hindered on the coated 

segments. 

5.4.2. Finite element simulation 

The conclusions drawn from experimental observations (Section 4.1) were examined and 

verified by FEM static analyses. The electromechanical response of IEAP actuators with different 

CNC patterns was modeled on ABAQUS/CAE using FEM (Section 2, Supporting Information). 

Figure 5-8 shows two different hypotheses for actuator 1S’s displacement distribution during 

cationic response; those are, cations are mainly accumulated in the PEDOT:PSS layer Figure 5-8a 

or Nafion Figure 5-8b. It confirms that in asymmetric segments, deformation mainly occurs on the 

PEDOT:PSS layer during the cationic response. Otherwise, instead of a homogeneous and circular 

deformation, a rectangular deformation occurs, which does not match the experimental results. It 

confirms that the largest capability of ions storage in Nafion/1s-PEDOT:PSS should locate at the 

coated side.  
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(a) (b) 

Figure 5-8: Displacement distribution of actuator 1S during cationic response under different hypotheses. 

When the total number of the movable ions in the actuator is fixed, the volume ratios of cations in the 

PEDOT:PSS layer (attached to the cathode) and the Nafion sub-layer (Supporting Information) are (a) 

2:1 and (b) 1:2, respectively.  

Figure 5-9 presents overlay images of experimental (5-9 a,c,e,g) and the corresponding 

simulated (5-9 b,d,f,h) results. Experimental results are collected under a 4 V step function and 

figures are extracted from video recordings. Simulations are the corresponding increments from 

static steps where blue and red gradation represents cationic and anionic strains, respectively. 

Experimental and simulated data are in good agreement, verifying the conclusive remarks made 

in Section 4.1. 
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Figure 5-9: Comparison of experimental bending displacement in response to a 4 V step input (left 

column) and the corresponding results produced by the static theoretical model via ABAQUS (right 

column). Figure (a) and (b) represent actuator 1S, (c) and (d) represent actuator 2SA2, (e) and (f) 

represent actuator 2SA3, and (g) and (h) represent actuator 2SS. The top electrode is the cathode and the 

bottom electrode is the anode. 
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In addition, as suggested by Hou et al., a simple aggregation model happened when EMI-

Tf ionic liquid was absorbed into an ionic polymer membrane (Nafion), indicating an excess of 

negatively charged triple ions, (Tf −-EMI+-Tf −) [24]. Without loss of generality, let EMI-Tf in 

Nafion membrane is in the format of (EMI+) and (Tf −-EMI+-Tf −). In an IEAP actuator, 15 mm × 

1 mm (l × w) and EMI-Tf uptake ~24 wt %, the increased weight is around 1.91 × 10−4 g. With 

the molecular weight of 260.23 g/mol in EMI-Tf, the molecular from EMI-Tf is 7.35 × 10−7 mol 

= 4.42 × 1017. Therefore, the total mobile cations (EMI+) and anion/anionic cluster (Tf −-EMI+-

Tf −) should be half of the total molecules inside, which equals to 2.21 × 1017. Meanwhile, when 

ΔT × α is small, the change in volume by thermal expansion ΔV can be simplified to 3𝛼 · Δ𝑇 ∙ 𝑉0, 

by excluding the higher orders, where 𝑉0 is the volume before any expansion/contraction. 

Simulations shown Figure 5-9 confirm a change in volume ΔV = 1.83 × 10−11 m3 in cationic 

response. Given the molecular volume of cations (EMI+) as 182 Å [47], an order of magnitude 

estimation is that 1.0 × 1017 (EMI+) cations are expected to contribute to the cationic response, 

which is almost half of the mobile cations inside Nafion membrane. In other words, based on the 

experiments and simulations indicated in Figure 5-9, approximately half of the ions from EMI-Tf 

contribute to actuation.  

Simulations shown in Figure 5-9 set the volume ratio of cations and anions/anionic clusters 

based on the results reported by Hou et al. They characterized the diffusion ratio 𝐷𝑐𝑎𝑡𝑖𝑜𝑛/𝐷𝑎𝑛𝑖𝑜𝑛  

of EMI-Tf ionic liquid inside Nafion membranes as a function of water content χwater [24]. They 

discovered that when 15–30 wt % EMI-Tf is absorbed in Nafion at very low water contents, the 

diffusion ratio falls in the range of 1.5–2.5. The diffusion coefficient D is inversely proportional 

to the size of diffusing particles as described by the Stokes-Einstein relation. 
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here k is the Boltzmann constant, T is absolute temperature, c is a constant factor depending 

on the shape and relative size of the diffusion particle to its surrounding fluid, η is fluid viscosity, 

and rH is the hydrodynamic radius of the diffusing particle [24, 50]. Since the cations and 

anions/anionic clusters exist in the same thermodynamic phase, 𝐷𝑐𝑎𝑡𝑖𝑜𝑛/𝐷𝑎𝑛𝑖𝑜𝑛 equals the 

reciprocal of their hydrodynamic radii ratio, which is proportional to the cubic root of the ions’ 

volume distributed in the Nafion membrane. That is 𝐷𝑐𝑎𝑡𝑖𝑜𝑛/𝐷𝑎𝑛𝑖𝑜𝑛  = 𝑟𝐻𝑎𝑛𝑖𝑜𝑛/

𝑟𝐻𝑐𝑎𝑡𝑖𝑜𝑛 ~(𝑉𝑎𝑛𝑖𝑜𝑛/𝑉𝑐𝑎𝑡𝑖𝑜𝑛 )
1

3. The volume ratio of cations and anions/anionic clusters set in the 

simulation falls in the range of 1.53–1.73, which is consistent with the results reported by Hou et 

al. 

 Conclusion 

Intrinsic angular deformation of IEAP actuators was achieved by incorporating conjugated 

polymer, PEDOT:PSS, patterns in the structure of soft actuators. Electrochemical and 

electromechanical studies were performed and it was observed that instead of the homogeneous 

circular deformation exhibited by conventional IEAP actuators, ones with polymer patterns bend 

at specific locations on the actuator which resulted in apparently angular deformation with sharp 

angles of 90° and beyond. Electromechanical responses indicate that actuation performances are 

significantly affected by different polymer patterns. Meanwhile, according to an FEM static model, 

approximately half of the ions from EMI-Tf contribute to the actuation. With different patterns of 

PEDOT:PSS, deformation patterns can be manipulated and actuators whose behaviors are complex 

but intrinsically controllable can be fabricated.  

Supplementary Materials: The following are available online at 

http://www.mdpi.com/1996-1944/10/6/664/s1, Figure S1: SEM images of specimen Nafion/1s-

𝐷 = 𝑘𝑇/(𝑐𝜂𝑟𝐻)                        (5-3)   

http://www.mdpi.com/1996-1944/10/6/664/s1
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PEDOT:PSS/Au, from middle point to edge ((a)–(c)) of PEDOT:PSS layer, Figure S2: Schematic 

of a bilayer laminate for the characterization of the elastic modulus of individual layer, Table S1: 

The thickness of each layer in IEAP actuator and its physical properties.. 
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 Supporting information for: Soft Ionic Electroactive Actuators with Tunable Non-

Linear Angular Deformation 

5.7.1. Morphological and mechanical characterizations. 

Figures S1a - S1c show a wedge-shaped thickness profile of the casted PEDOT:PSS layer. 

Similar to a trapezoid, the highest concentration is in the center, and gradually tapers off along the 

edge, due to the imperfect fabrication process of the simple drop-casting technique. 

 

Figure S 1: SEM images of specimen Nafion/1s-PEDOT:PSS/Au, from middle point to edge ((a) - (c)) of 

PEDOT:PSS layer. 

For the bilayer laminate with much larger length respect to its width and thickness, the 

elastic modulus of each layer can be deducted as described by Liu et al. previously [S1]. Figure 

S2 illustrates a bilayer laminate with the length much larger than the other dimensions. The elastic 

modulus of the entire structure Ye is dependent on the elastic modulus of each layer Ya and Yb as:  

𝑌𝑒 = 𝑎𝑌𝑎 + 𝑏𝑌𝑏                               (1) 

where a and b are the volume fractions of the corresponding layer in the laminate structure [S1]. 
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Figure S 2: Schematic of a bilayer laminate for the characterization of the elastic modulus of individual 

layer [S1].  

The thickness of the each layer is read from the SEM images; an average value from the 

middle point to the edge of the PEDOT:PSS layer was taken for the average thickness. Three 

tensile tests were conducted to take the average value. The elastic modulus of each component 

measured, deduced or read from other literatures is listed in Table S1, with the corresponding 

Poisson's ratio listed in the next column. 

Table S 1: The thickness of each layer in IEAP actuator and its physical properties [S2-S5]. 

 

5.7.2. Simulation of electromechanical response by FEM 

FEM is performed to model the electromechanical response of IEAP actuators with 

different patterns. The mechanical deformation is modeled by ABAQUS finite element code. Due 

to the pretty small width of the IEAP actuator (1 mm), the normal stress and the shear stresses 

directed perpendicular to the plane in which the bending occurs are assumed to be zero. As a result, 

the 3-D configuration of IEAP actuator can be reasonably approximated as a 2-D plane stress 
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configuration in the preprocessing module, with a 4-node bilinear plane stress quadrilateral 

(CPS4R) element for the analysis. Moreover, SEM images reveal a non-uniform distribution of 

PEDOT:PSS layer, whose highest concentration is in the center, and gradually tapers off along the 

edge. A trapezoid-like geometry is used to represent the PEDOT:PSS pattern. Material's property 

and geometry of each main component are read from SEM images and Table S1. Tie constraint is 

employed to model the surface contact with gold electrode as master surface and Nafion with 

PEDOT:PSS pattern as slave surface, with the assumption that no relative displacement happened 

due to the hot-pressed bonding. The boundary condition of ENCASTRE (U1 = U2 = U3 = UR1 = 

UR2 = UR3 = 0) is adopted at one end of the model to represent the mechanically fixed end of the 

actuator. 

The actuation response of IEAP actuators with ions from EMI-Tf is caused by the 

accumulation and depletion of excess charges at the electrodes under an applied voltage, which is 

equivalent to a thermal bimorph in mechanism. Nafion membrane is divided into four layers along 

the thickness evenly. The layer connected to cathode and anode are referred to as Nafion/cat and 

Nafion/ani, respectively. These two layers are used to simulate the expansion and contraction due 

to ions accumulation and depletion at different electrodes. The other two layers located in the 

middle are named by Nafion/neu, to simulate the ions depletion during the actuation process. A 

consistent isotropic thermal coefficient αL is applied to each main component, and temperature 

field is used to control the deformation of each layer. In ABAQUS the definition of the isotropic 

thermal coefficient αL is the ratio of change in length (ΔL) to the total starting length (L) and 

change in temperature (ΔT), with the expression as ΔL/L = αL × ΔT. The change in area of the 2D 

plane cross-section due to thermal expansion is ΔA = hl × (1 + αL × ΔT)2  ̶  hl ≈ 2hl.αL × ΔT if we 

exclude the higher orders due to the pretty small value of ΔL. As a result, the change in area (ΔA) 
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caused by thermal expansion/contraction is linear to the change in temperature (ΔT). Same 

approximation is also applicable to the change in volume (ΔV). 

Define N as the total amount of cations drifted in the cationic response of actuation. 

Following paragraphs introduce the detailed procedures and their theoretical support. 

1. Actuator 1S 

• Cationic response: N cations are drifted from Nafion/neu and Nafion/ani layers 

homogeneously, and accumulated in PEDOT:PSS layer (attached to cathode) and 

Nafion/cat layer with volume ratio of 2:1. 

• Anionic response: N anions/anionic clusters are drifted and stored in Nafion/ani 

layer from Nafion/cat and Nafion/neu layers homogeneously. The cations stored in 

PEDOT:PSS layer (attached to cathode) in previous cationic response won't move 

out during the anionic response. 

The procedures adopted in actuator 1S are based on the observation of a non-ignorable 

expansion from PEDOT:PSS layer when it only exists on the convex side of Nafion. Meanwhile, 

IEAP actuator with bare Nafion also displays a noticeable bending, indicating ions accumulation 

at the outer layers of Nafion and depletion at the inner layers at the same time[S1,S6]. In addition, 

PEDOT:PSS layer does not contain any ions at the very beginning, thus it won't show any 

contraction during the simulation. 

2. Actuator 2SA 

• Cationic response: N cations are drifted from Nafion/neu and Nafion/ani layers 

homogeneously, and accumulated in PEDOT:PSS layer (attached to cathode) and 

Nafion/cat layer with volume ratio of 2:1. 
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• Anionic response: N anions/anionic clusters are drifted from Nafion/neu and 

Nafion/cat homogeneously. Then, (i) part of the anions/anionic clusters are stored 

in PEDOT:PSS layer (attached to anode) with the same volume density of the 

cations in PEDOT:PSS layer (attached to cathode) in the previous cationic 

response, and (ii) remaining anions/anionic clusters are accumulated in Nafion/ani 

layer. 

The procedures adopted in the simulation of actuator 2SA are based on the same 

reason with part 1. 

3. Actuator 2SS 

Actuator 2SS differs remarkably from actuator 1S and 2SA. There are five segments along 

the length, with 3 segments made of Nafion/2s-PEDOT:PSS and 2 segments made of BNafion. 

Due to their significant difference in electrochemical and electromechanical responses, a segment-

wise procedure is employed as below: 

• Cationic response: in each segment made of BNafion, n (= N/5) cations are drifted 

from Nafion/neu and Nafion/ani layers homogeneously, and accumulated in 

Nafion/cat layer. In each segment made of Nafion/2s-PEDOT:PSS, n/8 cations are 

drifted from Nafion/neu and Nafion/ani layers homogeneously, then accumulated 

in PEDOT:PSS layer and Nafion/cat layer with volume ratio of 2:1. 

• Anionic response: in each segment of BNafion, n anions/anionic clusters are drifted 

and stored in Nafion/ani layer from Nafion/cat and Nafion/neu layers 

homogeneously. In each segment made of Nafion/2s-PEDOT:PSS, n=8 

anions/anionic clusters are drifted from Nafion/neu and Nafion/cat homogeneously. 
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Then, (i) part of the anions/anionic clusters are drifted and stored in PEDOT:PSS 

layer(attached to anode) with the same volume density of the cations stored in 

PEDOT:PSS layer (attached to cathode) in the previous cationic response, and (ii) 

remaining anions/anionic clusters are accumulated in Nafion/ani layer.  

The procedures adopted in actuator 2SS are based on the observation from the equivalent 

circuit modeling. Specimen Nafion/2s-PEDOT:PSS reveals a much smaller EDL capacitance (0.12 

µF) at the electrode surface when compared to the specimen BNafion (2.86 µF). As a result, 

BNafion and Nafion/2s-PEDOT:PSS are treated differently for a best match of the experimental 

results. 

From the equivalent circuit modeling, the ratio of EDL capacitance of specimen Nafion/2s-

PEDOT:PSS and specimen BNafion is 0.12/2.86 = 0.04, while from the simulation procedures 

above, this ratio becomes 1/8 = 0.125, in order to fully match the experimental results. It suggests 

the complexity to quantify the ions/ion clusters motion during the actuation. However, all the 

procedures made above is consistent with our previous electrochemical and electromechanical 

responses, and fully respect to the conclusions in earlier works [S1,S6-S8]. 
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Abstract 

Ionic polymer-metal composite (IPMC) actuators have considerable potential for a 

wide range of applications. Although IPMC actuators are widely studied for their 

electromechanical properties, most studies have been conducted at the ambient conditions. The 

electromechanical performance of IPMC actuators at higher temperature is still far from 

understood. In this study, the effect of temperature on the electromechanical behavior (the rate 

of deformation and curvature) and electrochemical behavior (current flow) of ionic liquid 

doped IPMC actuators are examined and reported. Both electromechanical and electrochemical 

studies were conducted in air at temperatures ranging from 25 °C to 90 °C. 

Electromechanically, the actuators showed lower cationic curvature with increasing 

temperature up to 70 °C and a slower rate of deformation with increasing temperature up to 50 

°C. A faster rate of deformation was recorded at temperatures higher than 50 °C, with a 

maximum rate at 60 °C. The anionic response showed a lower rate of deformation and a higher 

anionic curvature with increasing temperatures up to 50 °C with an abrupt increase in the rate 
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of deformation and decrease of curvature at 60 °C. In both cationic and anionic responses, 

actuators started to lose functionality and show unpredictable performance for temperatures 

greater than 60 °C, with considerable fluctuations at 70 °C. Electrochemically, the current flow 

across the actuators was increased gradually with increasing temperature up to 80 °C during 

the charging and discharging cycles. A sudden increase in current flow was recorded at 90 °C 

indicating a shorted circuit and actuator failure.    

 Introduction 

Ionic polymer-metal composites (IPMCs) are polymer-based soft composites that can 

be designed as soft actuators and sensors. IPMC actuators have several unique properties, 

including low density, large bending strain, low noise, high resilience, and low operation 

voltage; which make their application more practical compare to many of their metal- or 

ceramic-based counterparts. IPMC actuators have been widely studied, experimentally, and 

theoretically, as artificial muscles for biomedical applications, biomimetic micro-robotics, and 

harsh-environment tools such as space exploration micro-grippers [1–8].  

Upon fabrication, IPMCs are impregnated by optimum content [9] of ion-rich 

electrolyte, most often ionic liquids (ILs), as the source for mobilized ions. The operation 

principle of IPMC actuators is ultimately based on the accumulation of mobilized ions at the 

opposite electrodes in response to an externally-induced electric field. The difference between 

the volumes of cations and anions results in a volume imbalance and, therefore, mechanical 

stress, at the electrodes which, in turn, results in deformation of the IPMC structure toward the 

side with smaller volume. The motion of ions toward or away from each electrode is due to 

attractive or repulsive forces between the electrically-charged electrode and the ions, and can 

be reversed upon modulating the polarity of the electric field. The deformation depends on the 
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net difference of the volumes at the electrodes. If the drift velocity of the cations and anions 

are significantly different, a two-step deformation is observed in which the actuator is initially 

bent toward one side, then toward the other side. Conventionally, the bending caused by cations 

(toward the anode) is called cationic bending and denoted by positive sign when that resulted 

by anions (toward the cathode) is called anionic and denoted by negative sign [10,11]. This 

change in the direction of motion is different from back-relaxation phenomenon [12–14]. A 

scheme showing the principle of actuation is presented in Figure 6-1.  

 

Figure 6-1: Idealistic schematic of cationic and anionic bending mechanism (top, not to scale) and 

overlaid sequential images of cationic (red arrow) bending followed by anionic (blue arrow) bending 

(bottom) 

 

Many factors influence dynamics of ion mobility in IPMCs including mean free path 

of ions which is a factor of membrane thickness as well as membrane’s chemical and physical 
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structures [11,15,16], characteristics of ions (van der Waals volume) [11], and temperature. 

While characteristics of the membrane and ions are intrinsic to IPMCs and fixed, temperature 

is considered an external factor that can be changed for the same actuator during operation. 

Therefore, understanding the effect of temperature on IPMC actuators is critical in the 

prediction of their electromechanical behavior under different environmental conditions.  

Several studies have investigated the performance of IPMC actuators as a function of 

temperature. Shahinpoor et al. report that IPMC actuators can function at subzero temperatures, 

down to −140 °C [3]. On two independent studies, Brunetto et al. and Ganley et al. describe 

the sensing properties and modeling of the IPMCs for a range of temperatures above the 

ambient temperature and humidity [17,18]. Cha et al. and Farinholt et al. considered the effect 

of temperature on the IPMCs’ impedance [19,20]. Benziger et al.[21] measured the elastic 

modulus of Nafion membrane at different temperatures and humidity and observed that under 

dry conditions, the elastic modulus of Nafion decreased gradually with increasing temperature 

(up to 60 °C), with a steep decrease at 70 °C. This behavior was mainly related to the structural 

changes of Nafion at high temperatures. Nafion consists of a large tetrafluoroethylene (Teflon) 

backbone with short perfluorovinyl ether side chains terminated with sulfonate (SO3−) end 

groups. In its acidic form, Nafion exists with protons (H+) in close vicinity of its sulfonate end 

groups. The most widely-accepted model for the Nafion structure was presented by Hsu and 

Gierke in 1982 [22]. In that model, Nafion has a cluster network structure with nano-channels 

that allow ion transport through the membrane. The cluster-network model suggests that 

Nafion contains very small (few nanometers across) hollow inverted-micelle spheres 

connected with nanochannels and supported by the Teflon backbone cross-links. This 

configuration minimizes electrostatic repulsion between the ionic groups, and the cross-links 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDgQFjAD&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0022113904000946&ei=WBMiVY_WMIO4sAWt-ILQAQ&usg=AFQjCNFEonBxVV_TTU4VgB6fQhZE16w9bg&sig2=mFlbU4Z6vbAyy9rHnpiVJg
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stiffen the Nafion membrane. Benziger et al. suggested that the change in mechanical 

properties and the steep decrease in the elastic modulus at high temperatures (>60 °C) are 

caused by a microstructural change in Nafion—the inverted micelles and nano-channels start 

to collapse due to the increase of entropy; which causes a decline in mechanical properties.  

Sodaye et al. [23,24] studied the scattering parameter (S-parameter) and lifetime of dry 

acidic Nafion as a function of temperature and found that a larger S-value is related to a larger 

free volume within the Nafion structure. It was reported that, generally, the free volume 

increases noticeably with increasing temperature, indicating an expansion of the spherical 

clusters and nano-channels inside Nafion up to a threshold temperature, ~63 °C, where the free 

volume decreases. This decline in free volume at higher temperature is in agreement with 

findings reported by Benziger and colleagues, and can imply the collapse of some of the inner 

structures of Nafion. Such physical changes to the Nafion structure due to temperature 

variations, and other environmental factors such as humidity and moisture content are expected 

to influence its ionic and ion transport properties. Moreover, Nafion was reported to have a 

broad glass transition temperature within approximately 55–130 °C [25–27]. At the glass 

transition temperature, Nafion becomes more rubbery and that may also affect the structure of 

the membrane and the transport properties of the nano-channels in the Nafion structure and 

agrees with the results of Sodaye et al. and Benziger et al.  

In one study, Hou et al. [28] explored the interionic associations among IL constituent 

ions with respect to the hydration level and reported that the electrostatic forces may result in 

the formation of double, triple, and quadruple ion clusters of anions and cations. When the 

Nafion was dry, triple anionic clusters prevailed due to the strong electrostatic forces between 
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the charged species. Increasing water content reduced the electrostatic forces and resulted in 

ionic disassociation.   

In this study, rate and magnitude of electromechanical response of IL-doped IPMC 

actuators are characterized as a function of temperature. In particular, cationic and anionic 

motions are independently investigated, and the outcomes are integrated into a unifying model 

and conclusion. The dynamics of ion-cluster formation and deformation are studied utilizing 

electromechanical and electrochemical behavior of IPMCs in a wide range of temperatures. 

 Materials and Methods  

6.2.1. Materials 

A Nafion (sulfonated tetrafluoroethylene-based fluoropolymer-copolymer) ionomeric 

membrane of 25 µm thickness (NR-211, IonPower, New castle, DE, USA) was used as 

received. Poly(allylamine hydrochloride) (PAH) (Sigma-Aldrich, St. Louis, MO, USA) was 

procured at a concentration of 10 mM and used as polycation. Functionalized gold 

nanoparticles (AuNPs) of ~3nm diameter, Zeta potential of ca. −40 mV, and a concentration 

of 20 ppm (Purest Colloids Inc, Westampton, NJ, USA) were used as anionic materials. 1-

ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf (molecular formula, 

C7H11F3N2O3S)) (Sigma-Aldrich, St. Louis, MO, USA) was used as received. Twenty-four 

carat gold leaf electrodes of 50 nm thickness (L.A. Gold Leaf Wholesaler Inc.,Azusa, CA, 

USA) were used as the outer electrodes. 

6.2.2. Sample Preparation  

To fabricate the actuators, the layer-by-layer (LbL) technique [15,29] was used to 

deposit 20 bilayers of PAH/AuNPs and form the conductive network composites (CNCs) on 

both surfaces of Nafion films. The Nafion film was mounted on a glass frame using double-

https://en.wikipedia.org/wiki/Tetrafluoroethylene
https://en.wikipedia.org/wiki/Fluoropolymer
https://en.wikipedia.org/wiki/Copolymer
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sided tape and an automated robot (StratoSequence 6, NanoStrata Inc., Tallahassee, FL, USA) 

programmed for five-minute immersions in each ionic solution followed by three one-minute 

rinses in DI water was used to fabricate the bilayers. After forming the CNCs, the membranes 

were dried in air, and cut from the glass frame to obtain free-standing IPMCs. The IPMCs were 

then soaked for about six hours in EMI-TF ionic liquid at 80 °C, to obtain ~30% ionic liquid 

intake. Ionic liquid intake (IL%) was measured as a percent ratio of weight increase to the 

initial weight of the membrane, using Equation (6-1):  

𝐼𝐿(%) =  
𝑊𝑓 − 𝑊𝑖

𝑊𝑓
× 100%                                 (6-1)   

where 𝑊𝑖 and 𝑊𝑓 are the membrane’s weights before and after IL intake, respectively. 

Upon impregnation with IL, gold leaf electrodes were hot-pressed onto both sides of the 

membrane, at 95 °C and under ~100 KN of force, for 40 s using a 25 T hydraulic hot press 

(MTI Corporation, Richmond, CA, USA) [10,30]. The actuators were then cut into 1 × 10 mm2 

samples for testing. 

6.2.3. Electromechanical characterization 

Electromechanical characterizations were conducted in an in-house fabricated 

temperature controlled chamber where a type T (−CO +CP) (Omega Engineering Inc., 

Norwalk, CT, USA) thermocouple paired with a thermocouple meter (Omega DP41-TC-MDS, 

Omega Engineering Inc., Norwalk, CT, USA) were used to measure the temperature of the 

chamber. The desired temperatures were obtained by manually controlling and adjusting a 

resistive heater. Three different actuators from the same fabricated lot were tested at each 

testing temperature. Before each test, enough time was allowed to obtain a uniform and stable 

temperature across the chamber. Actuators were mounted with a clearance of 5 cm of the heater 
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on an in-house fabricated micro-probe station inside the chamber, and subjected to a +4 V step 

potential across the thickness using a function generator (Tektronix AFG 3022B, Tektronix 

Inc., Beavetron, OR, USA). All temperatures were within ±2 °C of the desired temperature 

during operation. The actuators were tested at room temperature (25 °C) and temperatures from 

30 °C to 70 °C by 10-degree increments. The electromechanical response was monitored and 

recorded at 30 frames per second using a CCD camera. Image frames were then analyzed to 

obtain the actuator’s radius of curvature as a function of time r(t). Time-dependent curvature 

k(t), where k(t) = r(t)−1, was then calculated and analyzed for different temperatures 

6.2.4. Electrochemical characterization 

A VersaSTAT-4 potentiostat (Princeton Applied Research, Oak Ridge, TN, USA) was 

used to apply a ±4 V step potential and measure the current flow over 60-second intervals 

across a 1 × 1 cm2 Nafion membrane with 30% ionic liquid intake at room temperature (25 

°C) and temperatures from 30 °C to 90 °C by 10-degree increments. The membranes were 

enclosed between two copper electrodes on both sides and the current density and time were 

then recorded for analysis. 

The same device was also used to apply a 10 mV potential at frequencies ranging from 

100 kHz to 0.1 Hz and to measure the samples’ electrical impedance. An equivalent RC 

electrical circuit with a Warburg element was previously proposed by several studies to 

represent the electrochemical performance across ionic liquid swollen Nafion membranes [9], 

from which the resistances (Rm) for membranes at different temperatures can be extracted 

from the Nyquist plot at high frequencies (i.e., 100 kHz), where the electrochemical system 

exhibits almost pure resistance behavior. The ionic conductivity was then calculated for the 

samples at different temperatures using Equation (6-2): 
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(6-2) 

where σ is the ionic conductivity, t is the thickness of the membrane, Rm is the 

resistance deduced from the Nyquist plots at high frequencies, and A is the surface area of the 

membrane [31]. After that, the Arrhenius equation in its linear form Equation (6-3) was used 

to fit the experimental at different temperatures: 

)ln()
1

()ln( 0 



TR

Ea

 

(6-3) 

where 𝜎 is the ionic conductivity, 𝜎0 is the maximum ionic conductivity, Ea is the 

activation energy, R is the gas constant, and T is the temperature. 

  Results  

6.3.1. Electromechanical Response 

6.3.1.1. Cationic Curvature. 

The cationic curvature as a function of time at 25 °C and for temperatures from 30 °C 

to 70 °C by 10-degree increments is shown in Figure 6-2. In this figure, the curvature is 

considered to be cationic as cations are dominating the bending process (i.e., the bending is 

toward the anode, as seen in Figure 6-1). After applying a step voltage, the cationic curvature 

increased to a maximum value and then decreased to zero as time progressed. The decrease in 

curvature resulted from the accumulation of bigger anionic clusters at the anode [10]. Both 

maximum cationic curvature and the cationic actuation time (the total time for the actuator to 

return to the neutral position) were affected as the system temperature increased, as shown in 

Figure 6-2. The maximum cationic curvature decreased for each temperature increment from 

25 °C to 70 °C, as shown in Figure 6-3a. Meanwhile, the cationic actuation time (from the 
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beginning of the motion back to the idle position) first increased to a maximum at 50 °C, with 

a sudden decrease at 60 °C, as shown in Figure 6-3b. No detectable bending occurred at 

temperatures higher than 70 °C. 

 

Figure 6-2: The cationic curvature at different temperatures. 

 

Figure 6-3. (a)The maximum cationic curvature, (b) The cationic actuation time, at different 

temperatures. 
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6.3.1.2. Anionic Curvature.  

Anionic curvature increased to a steady-state maximum value at each tested 

temperature from 25 °C through 70 °C. The anionic curvature as a function of time exhibited 

smooth deformation for temperatures ranging from 25 °C to 50 °C (see Figure 6-4 for a 

representative example). However, the actuator deformation fluctuated noticeably past 50 °C 

and up to 70 °C. Anionic curvatures for 25 °C (smooth) and 70 °C (fluctuating) are shown in 

Figure 6-4. The two curves were shifted to the zero time to be compared side-by-side, see 

Figure6-6 for the full actuation cycle data. The maximum anionic curvatures for actuators 

tested at 25 °C and for temperatures from 30 °C to 70 °C by an increment of 10 °C are shown 

in Figure 6-5. The maximum anionic curvature increased to a peak value as the temperature 

increased up to 50 °C and dropped abruptly after that. At temperatures above 70 °C, actuators 

only showed unpredictable oscillation at the idle position with no clear cationic or anionic 

curvatures. 

 

Figure 6-4. The anionic curvature at 25 °C and 70 °C, both shifted to time = zero for comparison. 
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Figure 6-5: The maximum anionic curvature at different temperatures. 

6.3.1.3. The time constant for anionic and cationic curvatures.  

A two-part first-order system model was used to fit the rate of deformation data for 

both cationic and anionic motions. In this model, both cations and anions are mobilized once 

the voltage is applied. Cationic and anionic curvatures were considered to have positive and 

negative values, respectively, to distinguish their opposing directions of motion. The model 

was produced using Equation (6-4) with a negative sign for the anionic motion [15,32]:  

( ) 1 exp( ) 1 exp( )cat an

cat an

t t
k t k k

 

    
      

     

(6-4) 

where k(t) is the net curvature as a function of time, 𝑘𝑐𝑎𝑡 and 𝑘𝑎𝑛are the cationic and 

anionic coefficients denoting the maximum value of each, t is the time, and 𝜏𝑐𝑎𝑡 and 𝜏𝑎𝑛 are 

the cationic and anionic time constants, respectively. Experimental data fitted with analytical 

curves for 25 °C and 70 °C are shown in Figure 6-6.  



www.manaraa.com

127 

 

 

 

The time constants at different temperatures are shown in Figure 6-7. The actuators had 

a lower rate of deformation (both 𝜏𝑐𝑎𝑡 and 𝜏𝑎𝑛 increased) with increasing temperatures up to 

50 °C. A sudden drop in 𝜏𝑐𝑎𝑡 and 𝜏𝑎𝑛 values were observed at 60 °C. At 70 °C the rate of 

deformation was small, yet associated with considerable fluctuations in motion. 

 

Figure 6-6 Experimental and fitted time dependent curvature at (a) at 25 °C, and (b) 70 °C. 

 

Figure 6-7. The time constant of cationic and anionic curvatures at different temperatures. 
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6.3.2. Electrochemical characterization 

Presented in Figure 6-8 is the time dependent current flow measured at different 

temperatures. Despite the lack of electromechanical response at temperatures higher than 70 

°C, electrochemical behavior of the actuators followed a constant pattern up to 80 °C, and 

exhibited a jump along with a relatively flat (time independent) high current flow at 90 °C 

indicating physical and/or chemical degradation of the actuator. The system then completely 

failed after about 60 seconds at 90 °C when the current flow dropped to zero. 

 

Figure 6-8. The current flow after applying 4 V across a 1 × 1 cm2 Nafion membrane with 30% EMI-

TF ionic liquid at different temperatures. The leftmost gray line is the current flow at room 

temperature; each colored line above it shows an increase in temperature from 30 °C to 90 °C. 

Figure 6-9 shows the ionic conductivity across the membranes calculated at different 

temperatures. The results showed an enhanced conductivity at higher temperatures. Moreover, 

a different conductivity behavior was noticed for the temperature range between 25 °C and 50 
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°C than the temperature range between 55 °C and 70 °C after fitting the conductivity data with 

the Arrhenius equation (Equation (6-3)). 

 

Figure 6-9: Arrhenius conductivity fitting for temperatures from 25 °C to 70 °C. 

 Discussion  

Experimental data confirmed two distinct deformation patterns for cationic and anionic 

curvatures, suggesting that each is differently affected by temperature. The magnitude of the 

cationic curvature exhibited an inversely proportional dependence on temperature as the 

temperature was increased from 25 °C to 70 °C (Figure 6-3a); while this correlation for anionic 

curvature was a direct correlation up to 50 °C followed by a sharp drop at 60 °C and increase 

at 70 °C (Figure 6-5). The irregular behavior of the anionic curvature was also observed for 

time constants of both cationic and anionic curvatures (Figure 6-7). 
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It is speculated that the irregular behavior of the IPMCs at higher temperatures is due 

to two main factors: 1) changes in Nafion’s nano-structure, and 2) changes in IL composition 

and transportation through Nafion. 

Changes in Nafion’s nano-structure has been subject to a number of studies, as 

described in the introduction section, and while it partially explains temperature dependent 

behavior of IPMC actuators, it fails to explain the distinct behaviors of cationic and anionic 

curvatures. It is speculated that changes in IL composition and transportation at different 

temperatures have a strong contributing factor to such distinct behaviors and can be used to 

explain the temperature-dependent behavior of IPMC actuators. 

Deformation of IPMC actuators is a result of ion mobility, in case of this study EMI+ 

and Tf−. Previous studies have indicated presence of Tf−-EMI+-Tf− anionic clusters in EMI-Tf 

ionic liquid; which are considerably more massive than EMI+ cations. Increasing the number 

of anionic clusters will enhance anionic curvature, considering the more significant difference 

in van der Waals volume of the cluster compared to that of EMI+, and the fact that for each 

cluster one cation is contributing to anionic curvature rather than, naturally, cationic curvature. 

However, the drifting velocity of such ionic clusters is lower due to the increased mass for the 

net one elementary charge. The drifting velocity Vd is reversibly related to the ion mass as 

shown in Equation (6-5) [33]: 

m

KT
Vd

3
2  (6-5) 

where K is the Boltzmann constant, T is absolute temperature, and m is the mass of the 

ion.  
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The magnitude of the maximum cationic curvature (Figure 6-3a), and the cationic and 

anionic rates of deformation (Figure 6-7), are both consequent to the net difference in 

magnitudes of cations and anions (including anionic clusters) drifting velocities that are vectors 

pointing at opposite directions or the amount of the moving ions. A larger net difference in 

velocities or a lower amount of moving anions/anionic clusters results in a higher maximum 

cationic curvature, as well as higher cationic and ionic rates of deformation, and vice versa. 

The magnitude of the maximum anionic curvature (Figure 6-5), on the other hand, solely 

depends on the net volume difference of the accumulated ions at the two electrodes which, in 

turn, depends on the abundance of anionic clusters accumulated at the anode. 

The maximum cationic curvature decreases with increasing temperature from 25 °C 

through 70 °C. This indicates a lower net difference between the cations and anions/anionic 

clusters drifting velocities or a higher number of anions/anionic clusters are being drifted and 

canceling the cationic motion. Figure 6-7 shows higher time constants for both cationic and 

anionic motions with increasing temperature. The higher time constant may conclude a slower 

drifting velocity of the charged species and lower current density. Instead, the current flow 

across the Nafion membranes increases with increasing temperature as shown in Figure 6-8. 

As cations are smaller in size and less massive than the anions/anionic clusters, they assumed 

to move freely at all temperatures. Thus, the number of moving cations is assumed to be the 

same or differ slightly at elevated temperatures. On the other hand, some of the larger and more 

massive anionic clusters will be trapped inside the Nafion’s nano-channels at low temperatures. 

Increasing temperature will expand Nafion’s nano-channels and increase the kinetic energy of 

the clusters, which increases the number of the moving anions/anionic clusters with a lower 

drifting velocity will explain the lower maximum cationic curvature and lower rate of 



www.manaraa.com

132 

 

 

 

deformations with increasing temperature up to 50 °C. To illustrate this, the current flow across 

the membrane can be modeled by Equation (6-6): 

0 1C exp( )[1 exp( )]
( )

aE t
I C

RT T

 
   

 

(6-6) 

where I is the current flow across the membrane, C0 is a constant related to the 

concentration of the IL, Ea is the activation energy, R is the gas constant, T is the temperature, 

t is time, 𝜏 (T) is the time constant as a function of temperature, and C1 is a constant to represent 

the steady state current flow. The equation shows that a higher current could be achieved with 

increasing temperature for the same initial IL concentration even for a higher time constant. 

Moreover, protons (H+) have a significant effect on the current flow. Protons are significantly 

smaller compared to EMI+ and Tf− ions, making it easier for them to drift across the Nafion 

membrane. Due to their size, increasing the protons’ kinetic energy will result in a greater 

current flow. This is true even at higher temperatures that break the inner nano-structure of 

Nafion. At 90 °C, the high current flow indicates a short circuit and actuator failure. 

Anionic curvature increases with increasing temperature up to 50 °C followed by a 

sudden decrease in curvature which is concurrent with an increase in the rate of deformation 

(decreasing time constant) occurred at 60 °C. The increase in anionic curvature can be 

explained by the larger number of anionic clusters accumulated at the anode due to the 

increased temperature. In addition to the ions’ greater kinetic energy, ion transport through 

Nafion is also expected to be facilitated by the expansion of the nano-structure of Nafion due 

to the increasing temperatures up to 50 °C, before a physical change in both the IL composition 

and the Nafion nano-structure at temperatures above 50 °C occur. 
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At 60 °C, there was an increase in both cationic and anionic rates of deformations and 

a steep drop in the anionic curvature. If ions become smaller (ion clusters dispersion into single 

ions), lower curvature and a higher rate of deformation result. It is speculated that at high 

temperatures (>50 °C), the kinetic energy of some the ions forming the ion clusters will be 

higher than the potential energy of the clusters. This will cause a dispersal of some of the 

clusters into single ions and increase the entropy of the system. Thus, at high temperature, ionic 

dispersal will result in a lower number of the anionic clusters to exist and decrease the net 

anionic curvature. The high energy and higher number of small single ions will result in a 

higher ion transport rate and a higher rate of deformation (time constant decreases). Ionic 

dispersal hypothesis can be supported by the conductivity results at different temperatures 

shown in Figure 6-9. The slope of the linear fitted line for different temperature ranges 

represents the activation energy needed for ion transportation. The activation energy is lower 

for temperatures >50 °C which concludes a smaller ionic species. Smaller ionic species shall 

result in an even higher conductivity (the conductivity at >50 °C should lie above the single 

dashed blue line in Figure 6-9). Instead, the conductivity at >50 °C is lower than the previous 

range trend. This might be due to the change and the breakage of some nano-channels in Nafion 

structure. Upon dispersion of ion clusters, both cationic and anionic curvatures again follow 

the same trend as that observed for lower temperatures, i.e., the decreasing rate of deformation 

as the temperature increases to 70 °C, with a steep decrease for the anionic curvature (Figure 

6-7). Benziger et al. demonstrated that, in dry conditions, the elastic modulus shows a steep 

decrease at temperatures between 70 °C and 100 °C [21]. The sudden decrease in modulus is 

related to the increase of entropy at high temperatures. This extra entropy randomly disperses 

the ionic groups in Nafion and breaks some of the inner structures and nano-channels. Breaking 
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these structures also affects the ions’ transport across the membrane. Majsztrik et al. reported 

the same results in their study about the effects of temperature and hydration on tensile creep 

viscoelastic response of Nafion [34]. Thus, breaking of some of the inner channels and clusters 

at higher temperatures can affect and limit the ion transport, and explain both the decrease in 

the rate of deformation and the decrease in the actuation curvature. The cluster breakage has 

more of an effect on the anionic rate of deformation, which results from the slower movement 

of the larger anionic clusters. That explains the greater difference in the rate of deformation at 

70 °C (Figure 6-7). 

 Conclusion 

In summary, this work investigates the effect of temperature on the electromechanical 

performance of IL-doped IPMC actuators. Cationic and anionic curvatures exhibited two 

distinct behaviors as a function of increasing temperature. Considering changes in the kinetic 

energy of ions as a function of temperature, ion mobility using Arrhenius relation, and physical 

changes of Nafion’s nano-structure, it is concluded that the complex electromechanical 

behaviors of IL-doped IPMC actuators at higher temperatures can be explained by changes in 

IL structure, i.e., dispersion of ion clusters in the IL and the number of the drifted ions at higher 

temperatures. It is suggested that the kinetic energy of the mobilized ions is higher than the 

potential energy of the ionic clusters at higher temperatures, which results in the dispersal of 

ionic clusters.  
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Abstract 

Ionomeric membranes are essential constituents of many ionic devices including fuel 

cells, lithium-ion polymer batteries, and ionomeric polymer transducers. Understanding the 

dynamics of ionic conductivity of ionomeric membranes is significant in better understanding 

and optimizing ionic devices. In this work, effects of temperature and Van der Waals volume 

of Nafion counterions on ionic conductivity of Nafion ionomeric membrane are studied. Ionic 

conductivity of lithium (Li+), potassium (K+), and 1-Ethyl-3-methylimidazolium (EMI+) ion-

exchanged Nafion membranes at temperatures varying from 25-70 ºC was investigated and a 

direct correlation between ionic conductivity and both temperature and Van der Waals volume 

of counter ions was observed. Ionic conductivity as a function of temperature (for all three 

counterions) exhibited two distinct slopes below and above ~50 ºC which is an indication of 

changes in activation energy, and confirms previously claims of ionic decomposition of EMI-

Tf ionic liquid around ~50 ºC.  
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 Introduction 

Ionomers (ion permeable polymers) have been subjected to numerous studies over the 

last several years. The significance of these studies has increased as ionomers have become 

essential in ionic devices, primarily those with energy generation and storage applications such 

as sensors and actuators, fuel cells, lithium-ion polymer batteries, and artificial muscles [1-7]. 

The functionality of devices that use ionomers mainly depends on the ion mobility (diffusion 

and/or drifting of ions) through ionomeric membrane. Ion mobility through membrane is 

dependent on many factors, including the chemical structure of the ionomer, the driving force 

(e.g. electric field), source and type of ions (aqueous electrolyte, ionic liquid, etc.), as well as 

the ambient conditions (e.g. humidity and temperature). Owing to its thermal and chemical 

stability and high ion permeability, Nafion has been one of the most desirable ion permeable 

membranes; thus, its ion transport properties have been subjected to several studies [8-11].  

Nafion consists of long tetrafluoroethylene (Teflon) backbone structure with short 

perfluorovinyl ether side chains terminated with sulfonate (SO3
 ̶ ) ionic groups. The sulfonate 

ionic groups are accompanied by proton (H+) counterions. Numerous fuelcell studies have 

confirmed diffusion-derived proton permeability of Nafion. Channelized nanostructure along 

with presence of ionic groups and counterions are known to be responsible for proton 

permeability of Nafion. Previous studies by others and us have confirmed that the proton 

counterions can be substituted by other cations through conventional ion exchange processes 

[12, 13]. It is also shown by others and us that drift-driven cation permeability of Nafion can 

be achieved, resulting in superior electromechanical attributes [7, 14-17]. In one study, Hong 

et al. [7]  investigated the correlations between electromechanical response and Van der Waals 

(VdW) volume of Nafion counterions in ionic electroactive polymer actuators; and observed 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDgQFjAD&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0022113904000946&ei=WBMiVY_WMIO4sAWt-ILQAQ&usg=AFQjCNFEonBxVV_TTU4VgB6fQhZE16w9bg&sig2=mFlbU4Z6vbAyy9rHnpiVJg
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an increased cationic response with increasing VdW volume of counterion. In another study, 

Bennett and colleagues studied the ion permeability of  Nafion membranes containing 

counterions of different VdW volumes and impregnated with 1-ethyl-3-methylimidazolium 

trifluoromethanesulfonate (EMI-Tf ) ionic liquid [18]. Correlations among ion permeability, 

VdW volume of counterions, and ionic liquid uptake were studied and a direct correlation 

between ion permeability and VdW volume was observed for a constant ionic liquid uptake.  

In addition to ionic composition, ion permeability of Nafion also depends on 

environmental conditions such as temperature. On two independent studies, Uosaki et al. and 

Cappadonia  et al. studied the ionic conductivity of Nafion at low temperatures, ranging from 

subzero to room temperature [19, 20]. Matos et al. studied the ionic conductivity of Nafion at 

higher temperatures, from room temperature up to 180 ºC [21]. All studies were conducted 

using pristine (proton counterion) Nafion and confirmed a direct proportionality between ion 

permeability and temperature. In our previous studies on effects of temperature on 

electromechanical response of ionic electroactive polymer actuators [22] two distinct 

behaviors were observed for two temperature ranges: 1) 25 ºC - 50 ºC and 2) 60 ºC - 70 ºC. 

The distinct behaviors were speculated to be a result of variations in ionic liquid composition 

and nanostructure of Nafion at higher temperatures as Nafion has a broad glass transition 

temperature that starts at about 55 ºC [23-25].  

There exists a knowledge gap in explaining the combined effect of temperature and 

VdW volume of counterions on the ion permeability of Nafion. In this work, we have 

investigated temperature dependence ion permeability of Nafion membranes containing 

counterions of different VdW volumes using electrochemical and analytical means. 
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 Materials and Methods 

7.2.1. Materials 

Nafion (sulfonated tetrafluoroethylene based fluoropolymer-copolymer) of 25 µm 

thickness (NR-211, IonPower, DE-USA) was used as the ionomer membrane. 1-ethyl-3-

methylimidazolium trifluoromethanesulfonate (EMI-Tf molecular formula, C7H11F3N2O3S) 

(Sigma-Aldrich, MO-USA) ionic liquid was used as electrolyte and as received. Lithium 

chloride (LiCl, Sigma-Aldrich, MO-USA), potassium chloride (KCl, Sigma-Aldrich, MO-

USA), and 1-Ethyl-3-methylimidazolium chloride (C6H11ClN2 (EMICl), Sigma-Aldrich, MO-

USA) salts were used as sources of the counterions that were to be exchanged with protons in 

Nafion membranes.  

7.2.2. Sample Preparation 

The preparation of samples started with exchanging the protons in Nafion with one of 

the counterions to be tested. The procedure for the counterion exchange is explained in detail 

previously [7]. Briefly, Nafion membrane in the protonated form were pretreated by boiling in 

1.0 M sulfuric acid for 120 minutes, followed by boiling in deionized (DI) water for 120 

minutes. The membrane was then exchanged from the proton form to one of the three 

neutralized forms by soaking in 0.5 M aqueous salt solutions for two days at 80 ºC, followed 

by eight days at 60 ºC. The three forms of ion exchanged membranes studied are lithium, 

potassium, and 1-ethyl-3-methylimidazolium (EMI). The membranes were then rinsed 

thoroughly and soaked in DI water for 3 hours to remove any excess salt. Membranes were 

then dehydrated in a vacuum oven (110 ºC, -100 kPa) for 3 days. Dehydrated membranes were 

then impregnated by soaking in EMI-Tf for 48 hours at 80 ºC and then cut into 1 × 1 cm2 

samples for testing. 

https://en.wikipedia.org/wiki/Tetrafluoroethylene
https://en.wikipedia.org/wiki/Fluoropolymer
https://en.wikipedia.org/wiki/Copolymer
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7.2.3.  Experimental Procedure 

Membranes were placed between two 1 × 1 cm2 copper electrodes that were glued to 

two separate glass substrates. Hot glue was then used to seal the structures before submerging 

it into a temperature-controlled water bath. A hot plate (Corning 5×7 in2 PC-420D, Corning, 

NY-USA) with temperature feedback control was used to achieve the desired temperature in 

the water bath and a VersaSTAT-4 potentiostat (Princeton Applied Research, IL-USA) was 

used to apply a 10 mV potential at frequencies ranging from 100 kHz to 0.1 Hz and to monitor 

electrical impedance.  

 Results and Discussion 

Ionic conductivity, (T), of ion-exchanged Nafion membranes as a function of 

temperature was calculated. Specimens were characterized for their electrochemical properties 

as a function of frequency. Presented in Figure 7-1 are Nyquist plots of different specimens 

and temperatures. The Nyquist plots were used to obtain resistance, RT, at different 

temperatures at high frequency, and the ion conductivity was calculated from Equation (7-1),  

𝜎(𝑇) =
𝑡

𝑅𝑇𝐴
 (7-1) 

where t is the thickness of the membrane and A is the surface area of the membrane [18]. 
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Figure 7-1: Nyquist plots for membranes with different counterions at different temperatures 

As presented in Figure 7-2, ionic conductivity exhibited direct correlations with both 

temperature and the VdW volume of the counterions; it is speculated that the increased ionic 

conductivity is the consequence of two main structural changes in the ionic system: 

nanostructure and ionic composition. Each of the structural changes can occur as a result of a 

number of different cause.  

VdW volume of counterions: Nafion consists of a channelized structure with very small 

and hollow inverted-micelle spheres connected with nanochannels that allow ion diffusion and 

drift [26]. It is suggested that larger ions, including counterions, may expand the narrow 

nanochannels between the inverted-micelle spheres, resulting in an increased mobility of ions 

through the membranes and allowing larger ions to be transported [7]. Additionally, it is 

experimentally proven that the counterions in (ion-exchanged and pristine) Nafion membrane 
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are mobilized under an external electric field [7, 18]. Bennett et al. have suggested that 

counterions transport through membranes by “hopping” among free Tf- sites after being 

displaced by EMI+ cations at the Nafion exchange sites. At the same ionic liquid uptake for 

samples with different counterions, the electrostatic binding energy is lower for counterions 

with larger VdW volumes, meaning less ionic liquid is required to displace these counterions. 

This will increase the amount of the free ionic liquid within the membrane and enhances ionic 

conductivity. 

 

Figure 7-2: Conductivity across Nafion membranes with different counterions at different 

temperatures. 
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Temperature: Increasing ionic conductivity with increasing temperature is due to the 

increase in kinetic energy of the ions as a function of temperature [19-21] and can be explained 

using Arrhenius equation for ionic conductivity, Equation (7-2):  

𝜎(𝑇) =  𝜎0 exp (
−𝐸𝑎

𝑅𝑇
) (7-2) 

where 0 is the maximum ionic conductivity, Ea is the activation energy, R is the gas constant, 

and T is the temperature. Equation (7-2) can also be rearranged to obtain Equation (7-3),  

ln(𝜎(𝑇)) =  
−𝐸𝑎

𝑅
(𝑇−1) + ln(𝜎0) (7-3) 

which exhibits a linear relationship between T-1 and ln(σ(T)). In previous studies, however, two 

distinct ranges of linear fitting (different slopes) were observed for experimental data obtained 

at low (< ~50 ºC) and high (> ~50 ºC) temperature ranges. The different slopes signify a 

different activation energies Ea within each temperature range since Ea represents the slope of 

the linear Arrhenius relation, as demonstrated in Equation (3). Presented in Figure 3 are 

experimental data fitted with the linear Arrhenius equation (equation 3). A general trend of 

higher ionic conductivity for higher temperatures is observed, with different slopes for 

temperatures below and above 50 ºC. The two trends of ionic conductivity are in good 

agreement with our previous studies on the electromechanical response of ionic electroactive 

actuators tested within these temperature ranges [22].  The two distinct ionic conductivity 

slopes can be explained by changes in ionic composition of the ionic liquid as well as changes 

to the nanostructure of Nafion. Changes in ionic composition is mainly related to the dispersal 

of large ionic complexes to smaller ionic species at elevated temperature (i.e. ~60 ºC), which 

require a lower activation energy to be transported through the membranes, as well as the 

changes in the nanostructure on Nafion that occures at about the same temperature. After the 
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conductivity data was fitted with the Arrhenius equation, the fitted lines showed a smaller slope 

for the temperatures between 60 ºC and 70 ºC compared to the temperatures ranging from 30 

ºC to 50 ºC, indicating a lower required activation energy at elevated temperatures, which is 

characteristic of smaller ions. Moreover, smaller mobilized ions should result in an even higher 

conductivity than the previous trend (the conductivity at 60 ºC and 70 ºC should lie above the 

single dashed blue lines in figure 3); however, a conductivity lower than the low-temperature 

trend was observed. This is expected to be a consequence of the change and breakage of 

nanochannels in the membrane due to the broad glass transition temperature of Nafion that 

starts at ~55 ºC[23-25], and affects the ion transport through the membranes. 

 

Figure 7-3: Arrhenius plots of ionic conductivity for Nafion membranes at different temperatures and 

for different counterions. 
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 Conclusion 

 Ionic conductivity of Nafion as a function of temperature and Van der Waals volume 

of counter ions is studied. A direct relation was observed between increasing ionic conductivity 

and both increasing temperature and increasing Van der Waals volume of counter ions. At 

higher temperatures, the increased kinetic energy enhances the ionic conductivity. Counterions 

with larger Van der Waals volume are speculated to expand the narrow nanochannels within 

the nanostructure of Nafion which is expected to enhance ion mobility; and thus, ionic 

conductivity. The ionic conductivity data was fitted with the Arrhenius equation and showed 

two different trends at two different temperature ranges. This observation can verify previously 

claimed dispersion of ionic complexes to smaller ions or smaller ionic complexes which 

requires a lower activation energy at elevated temperatures.  

Acknowledgements: This work was supported in part by funding from the Iowa State 
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 CONCLUSIOS AND FUTURE WORK 

 

 Conclusions 

The goal of this dissertation is to present some studies that directly affect the 

performance of the ionic electroactive polymer (IEAP) transducers. The studies were 

performed on actuators and sensors as functions of nanostructure (i.e. changing the structure 

of the CNC), ionic liquid uptake, and temperature. The concluding remarks of each study is 

summarized in a paragraph below. 

In Chapter 3, a study on the effect of ionic liquid concentration on the performance of 

the IEAP actuators was presented. IEAP actuators consisting of Nafion ionomeric membrane 

and EMI-Tf ionic liquid were fabricated and tested for different IL concentrations. It was 

expected to have a better actuation performance by increasing the IL concentration. Although 

the current flow across the membranes was higher with increasing the concentration, the 

electromechanical response had different behavior. We found that increasing concentration of 

ionic liquids in IEAP actuators results in an enhanced electromechanical response up to an 

optimum IL concentration. After that, increasing the IL concentration will form a secondary 

layer of ions, and generate undesired strain that partially cancels and reduces the strain 

generated by the ion layer at the interface. In short, the optimum (not maximum) concentration 

of ionic liquids should be incorporated in IEAP actuators to achieve a maximum 

electromechanical response.  

In Chapter 4, we reported a significant enhancement of IEAP sensors sensitivity by 

changing the structure of the CNC by adding small salt molecules during fabrication. The 

sensitivity of the IEAP sensor was enhanced by at least 3 to 4 folds for sensors with the salt 

molecules compared to IEAP without the salt molecules. It was found that the salt molecules 
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will change the thickness, porosity, and conductivity of the CNC layers which reflect the 

enhancement in the sensing performance. By changing the amount of the added salt molecules, 

the sensitivity of the stress sensors can be tolerated as desired.  

In chapter 5, an intrinsic angular deformation of IEAP actuators was achieved by 

incorporating conjugated polymer (CP), PEDOT:PSS, patterns in the structure of soft 

actuators. Angular deformation with sharp angles of 90° and beyond was achieved instead of 

the conventional circular deformation exhibited by IEAP actuators. Different deformation 

shapes were achieved in this study depending on the location, size, and number of the CP 

segments and the direction of motion of the actuators. With different combinations of the 

orientation, size, shape, number, and location of the CP patterns, more complex shapes and 

even a 3D deformation could be achieved. A finite element analysis (FEM), in addition to some 

electrochemical studies, were performed to explain this behavior as described in detail in this 

chapter. 

In chapter 6 and chapter 7, the effect of effect of temperature on the electromechanical 

and electrochemical performance of IEAP transducers were studied. In chapter 6, the 

electromechanical performance was studied on actuators operated in air inside a temperature 

controlled environment.  Cationic and anionic curvatures exhibited two distinct behaviors as a 

function of increasing temperature as presented in detail in this chapter. It is believed that both 

the change in the internal structure of the Nafion membranes and the ionic liquid structure at 

different temperatures have a direct effect on the electromechanical performance. In chapter 7, 

the ionic conductivity of Nafion as a function of temperature and Van der Waals volume of 

counterions was studied. The ionic conductivity was found to be directly proportional to the 

increase of the Van der Waal volume of the counterions and to the increase in temperature. 
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The ionic conductivity data were fitted with the Arrhenius equation and showed two different 

trends at two different temperature ranges. This observation support and verify the results 

achieved in chapter 6. 

 Future work  

I chapter 5, we discussed fabrication and modeling of soft ionic electroactive actuators 

with tunable non-linear angular deformation. The next step of the future work is to find some 

applications for such actuators. An example for that is fabrication microgrippers with angular 

deformation as shown in Figure 8-1. This type of grippers will enhance the gripping capability 

by using only IEAP actuators without the need of any end attachments.   

 

Figure 8-1: Microgrippers fabricated with actuators with angular motion 

Another example is to use these actuators to generate more complex structure or 

achieve 3D motion of the actuators by changing the conductive polymers patterns during 

fabrication. An actuator that would have a 3D motion is shown in Figure 8-2(a). And a set of 

actuators that would generate a complex structure (cube) are shown in Figure 8-2(b).  
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Figure 8-2: (a)Actuators with 3D motion. (b) Complex shape (cube) formation using IEAP actuators 

with angular motion 

As for the sensing part, IEAP sensors could be implemented in many applications such 

as: touch sensor, artificial skins, keyboards, and touch screens. Figure 8-3 shows some 

applications where IEAP sensors can be used.  

 

Figure 8-3: Some application of IEAP sensor. (a) touch sensors, (b) keyboards, (c) artificial skin, and 

(d) touch screen. 
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